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Abstract— The article presents some definitions of derivatives 

for set-valued mappings and their properties. A linear set-valued 

differential equation is considered and conditions for the 

existence of basic solutions are given. Subsequently, one optimal 

control problem is considered, when the system behavior is 

described by linear set-valued differential equations. 
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I. INTRODUCTION

Recently, within the framework of the theory of set-valued 
equations, properties of solutions of set-valued differential 
equations, set-valued differential inclusions, set-valued integro-
differential equations, and set-valued integral equations were 
considered, as well as impulse set-valued systems and 
controlled set-valued systems (see [1-4] and references in 
them). Obviously, obtaining all these results was impossible 
without the development of the theory of set-valued analysis. 
In the last decades in the works of A.V. Plotnikov and N.V. 
Skripnik [5], M.T. Malinowski [10], H. Vu, L.S. Dong [11], 
and S.E. Amrahov, A. Khastan, N. Gasilov, A.G. Fatullayev 
[12] definitions of the derivative of a set-valued mapping were
introduced, that unlike the already classical Hukuhara
derivative [13], made it possible to differentiate set-valued
mappings whose diameter is a decreasing function. This made
it possible not only to consider new types of set-valued
differential equations, but also to formulate new optimal
control problems.

One of these problems - the task of speed and the method 
for its solution are considered in this article. 

II. PRELIMINARIES

Let R  be the set of real numbers and nR be the n -

dimensional Euclidean space ( 2n  ). Denote by ( )nconv R  the 

set of nonempty compact and convex subsets of nR . For two

given sets , ( )nX Y conv R  and R  , the Minkowski sum 

and scalar multiple are defined by 

= { | , } = { | }.X Y x y x X y Y and X x x X + +   

Consider the Hausdorff distance ( , )h    given by 

( , ) = min{ 0 | (0), (0)},r rh X Y r X Y B Y X B  +  +  where 

(0) = { | }n

rB x R x r  is the closed ball with radius r

centered at the origin ( x  denotes the Euclidean norm). It is 

known that ( ( ), )nconv R h is a complete metric space. 

However, ( )nconv R  is not a linear space since it does not 

contain inverse elements for the addition, and therefore 

difference is not well defined, i.e. if ( )nA conv R  and 

{ },A a then ( 1) {0}.A A+ −  As a consequence, alternative

formulations for difference have been suggested. One of these 
alternatives is the Hukuhara difference [13]. Let 

, ( ).nX Y conv R A set ( )nZ conv R such that =X Y Z+ is 

called a Hukuhara difference (H-difference) of the sets X  and 

Y and is denoted by .
H

X Y In this case = {0}
H

X X  and 

also ( ) =
H

A B B A+ for any , ( ).nA B conv R

Simultaneously, M. Hukuhara introduced the concept of H-

differentiability [13] for set-valued mappings by using the H-

difference.  

Definition 1 [13]. Let :[0, ] ( )nX T conv R→  and 

[0, ].t T We say that ( )X   has a H-derivative 

( ) ( )n

HD X t conv R  at (0, )t T , if for all > 0  that are 

sufficiently close to 0,  the H-differences and the limits exist 

1

0

1

0

lim ( ( ) ( ))

lim ( ( ) ( )) ( ).H

H
X t X t

H
X t X t D X t

−

→

−

→

 +  =

=  −  =
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Theorem 1 [13]. If the mapping :[0, ] ( )nX T conv R→  is 

H-differentiable on [0, ]T , then 
0

( ) = (0) ( ) ,

t

HX t X D X s ds+   

where the integral is understood in the sense of [13].  

Corollary 1. If the set-valued mapping ( )X   is H-

differentiable on [0, ],T  then ( ( ))diam X   is a non-decreasing 

function on [0, ].T   

Corollary 2. If the function ( ( ))diam X   is a decreasing 

function on [0, ],T  then the set-valued mapping ( )X   is not H-

differentiable on [0, ].T  

Subsequently, other definitions of derivatives were 
introduced for set-valued mappings to eliminate this 
disadvantage. A.V. Plotnikov and N.V. Skripnik took 
advantage of some approaches that were used in [4,14] and 
introduced a new definition of a derivative, and studied its 
properties [5-9]. 

Definition 2 [5]. Let :[0, ] ( )nX T conv R→  and [0, ].t T  

We say that ( )X   has a PS-derivative ( ) ( )n

psD X t conv R  at 

(0, )t T , if for all > 0  that are sufficiently close to 0,  the 

H-differences and the limits exist in at least one of the 
following expressions: 
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 (iii) 
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 (iv) 

Theorem 2 [5]. If the mapping :[0, ] ( )nX T conv R→  is 

PS-differentiable on [0, ]T , then if the function ( ( ))diam X t  is 

a non-decreasing (decreasing) function on [0, ]T , then  

0

( ) = (0) ( )

t

psX t X D X s ds+    
0

( ) = (0) ( )

t

ps

H
X t X D X s ds

 
 
 

  

Later, M.T. Malinowski [10], H. Vu and L.S. Dong [11], 
and S .E. Amrahov, A. Khastan, N. Gasilov and A.G. 

Fatullayev [12] adapted the concept of the Bede-Gal derivative 

[15] for interval-valued mappings on set-valued mappings, and 
studied its properties [10-12]. 

Definition 3 [12]. Let :[0, ] ( )nX T conv R→  and 

[0, ].t T  We say that ( )X   has a BG-derivative 

( ) ( )n

bgD X t conv R  at (0, )t T , if for all > 0  that are 

sufficiently close to 0,  the H-differences and the limits exist in 

at least one of the following expressions: 

1

0

1

0

lim ( ( ) ( ))

lim ( ( ) ( )) = ( ),bg

H
X t X t

H
X t X t D X t

−

→

−

→

 +  =

=  − 

 (і) 

 

1

0

1

0

lim( ) ( ( ) ( ))

lim( ) ( ( ) ( ))= ( ),bg

H
X t X t

H
X t X t D X t

−

→

−

→

− +  =

= − − 

 (іі) 

 

1

0

1

0

lim ( ( ) ( )) =

lim( ) ( ( ) ( )) = ( ),bg

H
X t X t

H
X t X t D X t

−

→

−

→

 + 

= − − 

 (ііі) 

 

1

0

1

0

lim( ) ( ( ) ( ))

lim ( ( ) ( ))= ( ).bg

H
X t X t

H
X t X t D X t

−

→

−

→

− +  =

=  − 

 (іv) 

Remark 1. In [10], M.T. Malinowski considered set-valued 

mappings that satisfy condition (ii) and called this derivative a 

second type Hukuhara derivative. 

Theorem 3 [12]. If the mapping :[0, ] ( )nX T conv R→  is 

BG-differentiable on [0, ]T , then if the function ( ( ))diam X t  is 

a non-decreasing (decreasing) function on [0, ]T , then  

0

( ) = (0) ( )

t

bgX t X D X s ds+   
0

( ) = (0) ( 1) ( )

t

bg

H
X t X D X s ds

 
− 

 
  

Remark 2. If the set-valued mapping ( )X   is H-

differentiable on [0, ]T  then it is BG-differentiable on [0, ]T  

and PS-differentiable on [0, ]T  as well as 

( ) = ( ) = ( )H ps bgD X t D X t D X t .  

Remark 3. There exist set-valued mappings ( )X   such that 

( ) ( )bg psD X t D X t  for any .t  

III. LINEAR SET-VALUED DIFFERENTIAL EQUATIONS 

Now, we consider linear set-valued differential equations  

 
0( ) = ( ), (0) = ,DX t aX t X X  () 

where , ( 0)a R a  ; :[0, ] ( )nX T conv R→  is a set-valued 

mapping; ( )DX t  is one of the previously considered 
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derivatives ( ( ), ( ), ( ))H ps bgD X t D X t D t  of the set-valued 

mapping ( )X t ; 
0 ( )nX conv R . 

Definition 4. A set-valued mapping ( )X   is called a 

solution of (1) if it is continuously differentiable and satisfies 

system (1) everywhere on [0, ].T   

As known, linear differential equation (1) with Hukuhara 

has a unique solution on the interval [0, ]T . It is also obvious 

that function ( ( ))diam X t  is a non-decreasing function on 

[0, ].T  

Now, we consider linear set-valued differential equation 

(1) with PS-derivative and BG-derivative. By [5-12], set-

valued differential equation (1) with PS(BG)-derivative has at 

least one solution. Moreover, one of these solutions (the one 

whose diameter is a non-decreasing function) coincides with 

the solution of the corresponding Hukuhara differential 

equation and always exists. The second solution that may exist 

is such that its diameter is a decreasing function. These 

solutions are called basic (first and second basic solutions). 

There may also be mixed solutions such that the diameter is 

not a monotonic function. 

Proposition 1. For set-valued differential equation (1) with 

PS(BG)-derivative the following statements are true: 

1) if H-difference 0 0( 1)
H

X X−  exists, then differential 

equation (1) with PS(BG)-derivative has two basic solutions; 

2) if H-difference 0 0( 1)
H

X X−  does not exist, then 

a) if 0,a   then differential equation (1) with PS-

derivative has two basic solutions and differential equation (1) 

with BG-derivative has one basic solution; 
b) if < 0,a  then differential equation (1) with BG-

derivative has two basic solutions and differential equation (1) 
with PS-derivative has one basic solution. 

IV. LINEAR CONTROL PROBLEM 

Let the object behavior be described by the following 
system 

 
0= , (0, ) = ,psD X X u X u X+  () 

where :[0, ] ( )nX T conv R→  is a set-valued mapping; 

( )nu U conv R   is a control vector; 
0 ( );nX conv R  

0 intU .  

A vector function ( )u   is called an admissible control for 

the system (2) on an interval [0, ]T  if it is summable on [0, ]T  

and ( )u t U  for all [0, ]t T . 

The set-valued mapping ( , )X u  will be called the solution 

of the system (2) on the interval [0, ]T  corresponding to the 

admissible control ( )u  . 

We also note that any solution ( , )X u  of the system (2) has 

the following property: for all [0, ]t T , there are always such 

a number ( ) 0b t   and the vector ( ) nc t R  that 

0( , ) ( ) ( )X t u b t X c t= + , that is, the section of any solution of 

the system (2) preserves the shape of the initial set.  

Let ( ).n

KX conv R  Suppose that 
0X  and 

KX  are 

homothetic figures with coefficient 0k  . 

Consider the following problem of speed: it is required to 

move the object ( , )X u  according to the system (2) from the 

initial set 
0X  to the final set 

KX  for the minimum time 0T  , 

so that ( , ) KX T u X= . 

In paper [16], a similar problem was considered for the case 

when the behavior of the system was described by a controlled 

differential equation with the Hukuhara derivative and at the 

final moment of time the condition ( , ) KX T u X    should 

be satisfied. 

Let 
0 1(0)X B= . Consequently, ( )K bX B c= . 

At the beginning, we consider the classical control 
problems:  

1) it is required to move the object 
1( , )x u  according to 

system 
1 1x x u= +  from the starting point 

0 0x =  to the end 

point 
Kx c=  for the minimum time 0T   and find the 

optimal control 1

* ( )u   and the minimum time 1

*T . 

2) it is required to move the object 
2 ( , )x u  according to 

system 
2 2x x u= − −  from the starting point 

0 0x =  to the end 

point 
Kx c=  for the minimum time 0T   and find the 

optimal control 2

* ( )u   and the minimum time 2

*T . 

Let us substitute the controls 1

* ( )u   and 2

* ( )u   into the 

system (2) and choose the first basic solution 1

1 *( , )X u  and the 

second basic solution 2

2 *( , )X u . Then three cases are possible: 

1) 2 2 1 1

2 * * 1 * *( , ) ( , ) ,KX T u X T u X   

2) 2 2 1 1

2 * * 1 * *( , ) ( , ),KX T u X X T u   

3) 2 2 1 1

2 * * 1 * *( , ) ( , ).KX X T u X T u   

We consider each of these cases and begin with the second 

case 2 2 1 1

2 * * 1 * *( , ) ( , ).KX T u X X T u   By (3), it is necessary to 

find a mixed solution 
*( , )msX u of the system (2) such that 

* *( , )ms KX T u X= .  

We get the kind of desired mixed solution 

2 *

*

1 * *

( , ), [0, ],
( , ) =

( , ), ( , ],
ms

Y t u t t
X t u

X t u t t T
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where 

2
*

* 1
* *

( ), [0, ']
( )

( ), ( ', ]

u t t t
u t

u t t t T

 
= 



, 2 *( , )Y u  is second basic

solution of the equation, 
3

' ln ,
2

c
t

b

+ 
=  

 
*

2
2ln

2

c
T

b

+ 
=  

 
 of 

the equation 

* * 0= , (0, ) = ,psD Y Y u Y u X+

1 *( , )X u is the first basic solution of the equation 

* * 2 *= , ( ', ) = ( ', ).psD X X u X t u Y t u+

That is, 
*T  is the optimal time, 

* ( )u  is the optimal control, 

*( , )msX u is the optimal solution.

Now consider the first option, i.e.

2 * * 1 * *( , ) ( , ) .KX T u X T u X 

It's obvious that 
1 * *( ( , )) < ( ).Kdiam X T u diam X  However, 

according to the definition of the first basic solution, the 

function 
1 *( ( , ))diam X u is a monotonically increasing 

function. That is, there is such a moment time *

*> ,T T that 
*

1( ( , )) = ( ).Kdiam X T u diam X  Consequently, it is necessary to 

construct such a control * ( ),u  that * *

1( , )) = .KX T u X

Since for any admissible control ( )u   the first basic 

solution has the form 
1 1

0
( , ) = (0) ( ) ,

t
t t sX t u e B e e u s ds−+   where 

the first term determines the form and volume of the solution at 
each moment of time, and the second term determines its 

location in space .nR Consequently, * = ln( ).T b

Let *

*= T T − and
*

*

* *

*

( ) 0, [0, ),
( ) =

( ) = ( ), [ , ].

u t t
u t

u t u t t T



 

  


− 

Now we find the first basic solution *

1( , )X u of the system (2) 

on the interval *[0, ],T  that corresponds to the control *( )u  . 

Consequently, *T  is the optimal time, *( )u  is the optimal 

control, *

1( , )X u is the optimal solution. 

The third case is solved similarly. Only we build a second 
basic solution. 

In conclusion, we make the following remarks: 

1) if
0X is not a ball (but 

0X and 
KX are homothetic 

figures with a coefficient 0k  ), then we describe balls 

around the sets 
0X and 

KX and solve the problem as it was 

done for the balls; 

2) if the behavior of the object is described by system

0= , (0, ) = ,DX aX u X u X+ where , ( 0)a R a  , ( )DX t is

one of the previously considered derivatives ( )psD X t or

( )bgD t of the set-valued mapping ( )X t , then the problem is 

solved in a similar way, but Proposition 1 must be taken into 
account. 
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