On the semi-scalar equivalence of polynomial matrices

https://doi.org/10.31713/MCIT.2021.25

Volodymyr Prokip
IAPMM, 3b Naukova Str., L'viv, Ukraine, 79601

Abstract

Polynomial matrices $A(\lambda)$ and $B(\lambda)$ of size $n \times n$ over a field F are semi-scalar equivalent if there exist a nonsingular $n \times n$ matrix P over F and an invertible $n \times n$ matrix $Q(\lambda)$ over $F[\lambda]$ such that $A(\lambda)=P B(\lambda) Q(\lambda)$. The aim of the present report is to present a triangular form of some nonsingular polynomial matrices with respect to semi-scalar equivalence.

Keywords - Polynomial matrix; Equivalence of matrices; Smith normal form.

I. Introduction

Let F be a field. Denote by $M_{n, n}(F)$ the set of $n \times n$ matrices over F and by $M_{n, n}(F[\lambda])$ the set of $n \times n$ matrices over the polynomial ring $F[\lambda]$. In what follows, I_{n} is the identity $n \times n$ matrix and O_{n} is the zero $n \times n$ matrix. A polynomial $a(\lambda)=a_{0} \lambda^{k}+a_{1} \lambda^{k-1}+\ldots a_{k} \in F[\lambda]$ is said to be monic if the first non-zero term $a_{0}=1$.
Let $A(\lambda) \in M_{n, n}(F[\lambda])$ be a nonzero matrix and $\operatorname{rank} A(\lambda)=r$. For the matrix $A(\lambda)$ there exist matrices $U(\lambda), V(\lambda) \in G L(n, F[\lambda])$ such that
$U(\lambda) A(\lambda) V(\lambda)=S_{A}(\lambda)=\operatorname{diag}\left(s_{1}(\lambda), s_{2}(\lambda), \ldots, s_{r}(\lambda), 0, \ldots, 0\right)$, where $s_{i}(\lambda)$ are monic polynomials for all $i=1,2, \ldots, r$ and $s_{1}(\lambda)\left|s_{2}(\lambda)\right| \ldots \mid s_{r}(\lambda)$ (divides) are the invariant factors of $A(\lambda)$. The diagonal matrix $S_{A}(\lambda)$ is called the Smith normal form of $A(\lambda)$.
Matrices $A(\lambda), B(\lambda) \in M_{n, n}(F[\lambda])$ are said to be semi-scalar equivalent if there exist matrices $P \in G L(n, F)$ and $Q(\lambda) \in G L(n, F[\lambda])$ such that $A(\lambda)=P B(\lambda) Q(\lambda)$ (see [1], Chapter 4).

Let $A(\lambda) \in M_{n, n}(F[\lambda])$ be nonsingular matrix over an infinite field F. Then $A(\lambda)$ is semi-scalar equivalent to the lower triangular matrix [1]
$S_{l}(\lambda)=\left[\begin{array}{ccccc}s_{1}(\lambda) & 0 & \cdots & \cdots & 0 \\ s_{21}(\lambda) & s_{2}(\lambda) & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ s_{n 1}(\lambda) & s_{n 2}(\lambda) & & s_{n, n-1}(\lambda) & s_{n}(\lambda)\end{array}\right]$
With the following properties:

1. $s_{i}(\lambda), i=1,2, \ldots, n$; are the invariant factors of $A(\lambda)$;
2. $s_{i}(\lambda)$ divides $s_{j i}(\lambda)$ for all $1 \leq i<j \leq n$.

Let $F=\{0,1\}$ be a field of two elements. It is easily verified that the polynomial matrix $A(\lambda)=\left[\begin{array}{cc}\lambda & 0 \\ \lambda^{2}+1 & \left(\lambda^{2}+1\right)\left(\lambda^{2}+\lambda+1\right)\end{array}\right]$ over the field F is not semi-scalar equivalent to the lower triangular matrix $\quad S_{l}(\lambda)=\left[\begin{array}{cc}1 & 0 \\ * & \lambda\left(\lambda^{2}+1\right)\left(\lambda^{2}+\lambda+1\right)\end{array}\right]$. Thus, the triangular form $S_{l}(\lambda)$ for nonsingular matrices over a finite field not always exists.
It may be noted that for a singular matrix $A(\lambda)$ the matrix $S_{l}(\lambda)$ does not always exist.
Example. Let $F=\mathrm{R}$ be the field of real numbers. For 2×2 matrices
$A(\lambda)=\left[\begin{array}{cc}1 & 0 \\ \lambda^{3}-3 \lambda^{2}-\lambda & \left(\lambda^{2}-1\right)\left(\lambda^{2}-2 \lambda\right)\end{array}\right]$
and
$B(\lambda)=\left[\begin{array}{cc}1 & 0 \\ \lambda^{3}-\lambda^{2}-\lambda & \left(\lambda^{2}-1\right)\left(\lambda^{2}-2 \lambda\right)\end{array}\right]$
with entries from $R[\lambda]$ there exist matrices $Q(\lambda)=\left[\begin{array}{cc}2 \lambda^{3}-6 \lambda^{2}-2 \lambda+9 & 2 \lambda^{4}-4 \lambda^{3}-2 \lambda^{2}+4 \lambda \\ -2 \lambda^{2}+4 \lambda+4 & -2 \lambda^{3}+2 \lambda^{2}+2 \lambda+1\end{array}\right]$
$\in G L(2, \mathrm{R}[\lambda])$ and $P=\left[\begin{array}{cc}1 / 9 & -2 / 9 \\ 0 & 1\end{array}\right] \in G L(2, \mathrm{R})$ such that $A(\lambda)=P B(\lambda) Q(\lambda)$
From this example it follows, that the triangular form $S_{l}(\lambda)$ is not uniquely determined for a nonsingular polynomial matrix $A(\lambda)$ with respect to semi-scalar equivalence.

Modeling, control and information technologies - 2021

Dias da Silva J.A and Laffey T.J. studied polynomial matrices up to PS-equivalence [2]. Matrices $A(\lambda), B(\lambda) \in M_{n, n}(F[\lambda]) \quad$ are PS-equivalent if $A(\lambda)=P(\lambda) B(\lambda) Q$ for some $P(\lambda) \in G L(n, F[\lambda])$ and $Q \in G L(n, F)$.
Let F be an infinite field. A nonsingular matrix $A(\lambda) \in M_{n, n}(F[\lambda])$ is PS-equivalent to the upper triangular matrix (see [2], Proposition 2)

$$
S_{u}(\lambda)=\left[\begin{array}{ccccc}
s_{1}(\lambda) & s_{12}(\lambda) & s_{13}(\lambda) & \cdots & s_{1 n}(\lambda) \\
0 & s_{2}(\lambda) & s_{23}(\lambda) & \cdots & s_{2 n}(\lambda) \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & 0 & s_{n}(\lambda)
\end{array}\right]
$$

with the following properties:

1. $s_{i}(\lambda), i=1,2, \ldots, n$; are the invariant factors of $A(\lambda)$;
2. $s_{i}(\lambda)$ divides $s_{i j}(\lambda)$ for all $1 \leq i<j \leq n ;$
3. if $i \neq j$ and $s_{i j}(\lambda) \neq 0$ then $s_{i j}(\lambda)$ is a monic polynomial and $\operatorname{deg} s_{i i}(\lambda)<\operatorname{deg} s_{i j}(\lambda)<\operatorname{deg} s_{j j}(\lambda)$.
The matrix $S_{u}(\lambda)$ is called a near canonical form of the matrix $A(\lambda)$ with respect to PS-equiva-lence. We note that conditions (1) and (2) for semi-scalar equivalence were proved in [1].

It is evident that matrices $A(\lambda), B(\lambda) \in M_{n, n}(F[\lambda])$ are PS-equivalent if and only if the transpose matrices $A^{T}(\lambda)$ and $B^{T}(\lambda)$ are semi-scalar equivalent. It is clear that semi-scalar equivalence and PS-equivalence represent an equivalence relation on $M_{n, n}(F[\lambda])$. On the basis of the semi-scalar equivalence of polynomial matrices in [1] algebraic methods for factorization of matrix polynomials were developed. We note that these equivalences were used in the study of the controllability of linear systems (see [3], [4]).

The semi-scalar equivalence and PS-equivalence of matrices over a field F contain the problem of similarity between two families of matrices ([1], [2], [5-7]). In most cases, these problems are involved with the classic unsolvable problem of a canonical form of a pair of matrices over a field with respect to simultaneous similarity. At present, such problems are called wild [5].

The semi-scalar equivalence of matrices includes the following two tasks: (1) the determination of a complete system of invariants and (2) the construction of a canonical form for a matrix with respect to semiscalar equivalence. But these tasks have satisfactory solutions only in isolated cases. The ca-nonical and normal forms with respect to semi-scalar equivalence for a matrix pencil $A(\lambda)=A_{0} \lambda+A_{1} \in M_{n, n}(F[\lambda])$ over arbitrary field F, where A_{0} is nonsingular, were
investigated in [8] and [9]. A canonical form with respect to semi-scalar equivalence for a polynomial matrix over a field is unknown in general case.

II. Main results

In this part we present main results of this report.
Theorem. Let $A(\lambda) \in M_{n, n}(F[\lambda])$ be nonsingular matrix with the Smith normal form
$U(\lambda) A(\lambda) V(\lambda)=S_{A}(\lambda)=\operatorname{diag}(1, s(\lambda), \ldots, s(\lambda))$, where $s(\lambda)$ is a monic polynomial and $\operatorname{deg} s(\lambda)=n$. The matrix $A(\lambda)$ is semi-scalar to the matrix
$S_{l}(\lambda)=\left[\begin{array}{cccccc}1 & 0 & \cdots & \cdots & \cdots & 0 \\ \lambda & s(\lambda) & 0 & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & & & \vdots \\ \vdots & \vdots & & \ddots & & \vdots \\ \lambda^{n-2} & 0 & \cdots & 0 & s(\lambda) & 0 \\ \lambda^{n-1} & 0 & \cdots & \cdots & 0 & s(\lambda)\end{array}\right]$
if and only if the matrix $A(\lambda)$ admits the representation $A(\lambda)=B(\lambda) W(\lambda)$, where $W(\lambda) \in$ $G L(n, F[\lambda])$ and $B(\lambda)=I_{n} \lambda^{n-1}+B_{1} \lambda^{n-2}+\ldots+B_{n-1} \in M_{n, n}(F[\lambda])$ is a monic polynomial matrix of degree $n-1$. The matrix $S_{l}(\lambda)$ is uniquely defined for the matrix $A(\lambda)$.

Let $B(\lambda) \in M_{n, n}(F[\lambda])$. The matrix $B(\lambda)$ we write in the form $B(\lambda)=B_{0} \lambda^{r}+B_{1} \lambda^{r-1}+\ldots+B_{r}$, where $B_{i} \in M_{n, n}(F), \quad i=1,2, \ldots, n$. It is well known that a matrix polynomial equation
$X^{r} B_{0}+X^{r-1} B_{1}+\ldots+X B_{r-1}+B_{r}=O_{n}$
is solvable if and only if the matrix $B(\lambda)$ admits the representation $B(\lambda)=\left(I_{n} \lambda-D\right) C(\lambda) \quad, \quad$ where $D \in M_{n, n}(F)$ [10]. The problem of solvability of matrix polynomial equations was investigated by many authors (see [1], [11-14] and references therein).

Following propositions gives a complete answer to the question of solvability of a matrix polynomial equation of second order over an infinite field (see also [14]).

$$
\text { Let } \quad A(\lambda)=\sum_{i=0}^{r} A_{i} \lambda^{r-i} \in M_{2,2}(F[\lambda]) \quad \text { be } \quad \text { a }
$$

nonsingular matrix. Further, let $S_{l}(\lambda)=\left[\begin{array}{cc}s_{1}(\lambda) & 0 \\ s_{21}(\lambda) & s_{2}(\lambda)\end{array}\right]$ be a near canonical form of the matrix $A(\lambda)$ with respect to semi-scalar equivalence. By [9] and based on the above, we get the following statements.
Proposition 1. Let $s_{1}(\lambda)=\left(\lambda-\alpha_{1}\right) c_{1}(\lambda)$ and $s_{2}(\lambda)=\left(\lambda-\alpha_{2}\right) c_{2}(\lambda)$, where $\alpha_{i} \in F . A$ matrix

Modeling, control and information technologies - 2021

polynomial

equation
$X^{r} A_{0}+X^{r-1} A_{1}+\ldots+X A_{r-1}+A_{r}=O_{2} \quad$ is solvable over a field F if and only if there exists $\beta \in F$ such that the matrix $D_{\beta}(\lambda)=\left[\begin{array}{cc}\lambda-\alpha_{1} & 0 \\ \beta & \lambda-\alpha_{2}\end{array}\right]$ is a left
divisor of $S_{l}(\lambda)$, i. e. $S_{l}(\lambda)=\mathrm{D}_{\beta}(\lambda) C(\lambda)$.
Proposition 2. Let $s_{2}(\lambda)=\left(\lambda^{2}+\lambda \alpha_{1}+\alpha_{2}\right) c_{2}(\lambda)$, where $\lambda^{2}+\lambda \alpha_{1}+\alpha_{2} \in F[\lambda]$. A matrix polynomial equation $\quad X^{r} A_{0}+X^{r-1} A_{1}+\ldots+X A_{r-1}+A_{r}=O_{2} \quad$ is solvable over a field F if and only if there exists $\delta_{0}, \delta_{1} \in F$ and $\delta_{0} \neq 0$ such that the matrix $D_{\delta}(\lambda)=\left[\begin{array}{cc}1 & 0 \\ \delta_{0} \lambda+\delta_{1} & \lambda^{2}+\lambda \alpha_{1}+\alpha_{2}\end{array}\right]$ is a left divisor of $S_{l}(\lambda)$, i.e. $S_{l}(\lambda)=\mathrm{D}_{\delta}(\lambda) C(\lambda)$.

III. Acknowledgements

I am thanks to Drozd Yu.A. for support and long-term scientific cooperation. I am thank to Sergeichuk V.V. for useful discussions on the topic of this study. I would like to thank my friends also. Last, but certainly not least, I would like to thank referees for comments and suggestions.

References

[1] P. S. Kazimirs'kyi. Decomposition of Matrix Polynomials into factors. Naukova Dumka, Kyiv; 1981 (in Ukrainian).
[2] J.A. Dias da Silva and T.J. Laffey. On simultaneous similarity of matrices and related questions. Linear Algebra and its applications, 291 (1999) 167-184. doi.org/10.1016/S0024-3795(98)10247-1.
[3] M. Dodig. Controllability of series connections. Electron. J. Linear Algebra, 16 (2007) 135-156. doi.org/10.13001/10813810.1189.
[4] M. Dodig. Eigenvalues of partially prescribed matrices. Electron. J. Linear Algebra, 17 (2008) 316-332. doi.org/10.13001/1081-3810.1266.
[5] Yu.A. Drozd. Tame and wild matrix problems. Lecture Notes in Math. 832 (1980) 242-258. doi.org/10.1007/BFb0088467.
[6] S. Friedland. Matrices: Algebra, Analysis and Applications. World Scientific; 2015.
[7] V.V. Sergeichuk. Canonical matrices for linear matrix problems. Linear algebra and its applications, 317 (2000) 53102. doi.org/10.1016/S0024-3795(00)00150-6.
[8] V.M. Prokip. Canonical form with respect to semi-scalar equivalence for a matrix pencil with nonsingular first matrix. Ukrainian Mathematical Journal, 63(2012) 1314-1320. doi.org/10.1007/s11253-012-0580-x.
[9] V.M. Prokip. On the normal form with respect to the semiscalar equivalence of polynomial mat-rices over the field. J. Math. Sciences, 194 (2013) 149-155. DOI:10.1007/S10958-013-1515-2.
[10] P. Lancaster and M. Tismenetsky. The theory of matrices. Second edition with applications. Academic Press, New York; 1985.
[11] I. Gohberg, P. Lancaster, L. Rodman, Matrix Polynomials. Academic Press, New York, 1982.

12] V.M. Petrichkovich and V.M. Prokip. Factorization of polynomial matrices over arbitrary fields.Ukr. Math. J. 38 (1986), 409-412. doi.org/10.1007/BF01057299.
[13] E. Pereira. On solvents of matrix polynomials. Applied numerical mathematics. 47:2 (2003): 197-208. doi.org/10.1016/S0168-9274(03)00058-8.
[16] M. Slusky. Zeros of 2×2 Matrix Polynomials. Communications in Algebra, 38:11 (2010) 4212-4223. doi.10.1080/00927870903366843..

