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Abstract— Triangular norms and associative functions are 

base of connectives in fuzzy logic and fuzzy systems. New 

connective operator that can generate different classes of fuzzy 

connectives is proposed. It is proved that this operator satisfies 

the requirements of such axioms as commutativity, associativity, 

monotonicity and boundary conditions. It is parameterized and 

therefore new triangular norms are obtained. Constructed 

parameterized triangular norms are of a strict and Archimedian 
type. 
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I. INTRODUCTION

Developing associative functions, Menger [1] introduced 
the concept of a triangular norm for the generalization of the 
inequality of a triangle in a certain space. Schweizer and Sclar 
introduced the modern definition of the triangular norm in the 
theory of probabilistic metric spaces [2]. These norms can be 
used as a generalization of the connectives of Boolean logic to 
many-valued and fuzzy logic [3-5]. This fact has led to an 
increase in the interest and comprehensive development of the 
theory of triangular norms [6, 7]. Nowadays fuzzy sets theory 
and fuzzy logic are the basis for modern systems of 
management and decision-making in many branches of 
industry. Therefore, creating methods for building of new 
triangular norms is an actual task. 

This paper is organized as follows. At the beginnings in 
Section II we present known operators for construction of 
Archimedian triangular norms. New operator will be proposed 
in Section III. In Section IV new obtained triangular norms will 
be shown. 

II. EXISTING OPERATORS FOR TRIANGULAR NORMS 

CONSTRUCTION

Aczel [1] proposed conventional generator for triangular t-

norm construction which is expressed as  
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is monotonically decreasing function and )(1 f – inverse to

)(f function which is known as a pseudoinverse. 

A new class of generators is described in [8, 9]. It is based 

on the use of the next operator 
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However, the disadvantage of such an operator (2) is the 

lack of direct parameterization of the obtained by it functions 

which would help to control the change of their properties. To 

eliminate this drawback, we have chosen as a basis an operator 

of a different kind than (2). It is associated with the solution of 

the functional equations of the form [8] 
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and which, according to the description (3), takes the form 
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The another two types of operators for generating 

triangular norms are proposed in [10]: 
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This generators will create a t-norms when 

]1,0(),0[:)( x , and ),0[]1,0(:)(1  x . 

However, operators (4)-(6) are also characterized by the 

same disadvantage - the lack of direct parameterization of the 

obtained triangular norms. Therefore, in [11], generator of 

another type is proposed 
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where 0p . To expand the ability to construct new triangular 

norms, the new operator will be considered in the next section. 

This operator develops and generalizes known operators (5) 

and (6) via its parameterization. 
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III. CONSTRUCTION OF THE NEW OPERATOR FOR TRIANGULAR 

NORMS

The new operator for generating of triangular t-norms is 
described by the expression 
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where ]1,0[x , ),0[)( xf , 0)0( f , 
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, 
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Let us prove that function (8) can be operator for triangular 
norms generation. In other words, that it satisfies the 
requirements of a number of axioms, in particular it should be 
commutative, associative, monotone and satisfy the boundary 
conditions. 

Commutativity: ),(),( 77 xyhyxh  . 
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Associativity: )),(,()),,(( 7777 zyhxhzyxhh  . 

On the one side 
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On the other side 
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From comparison (9) and (10) it follows that 
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and (8) is an associative function. 

Monotonicity: ),(),( 77 zxhyxh  for zy  . 

Let )(xf  be a monotonically increasing function and such that 
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Add )(/1 xf  to both parts of (11). Then we get
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On the other side, if )()( zfyf   and 0)( xf , then 
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After multiplying each part of inequality (14) into 0p  we 

have 
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Adding (14) and (15) we get 
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since )(1 f  is increasing 
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Boundary conditions: xxh )1,(7 , 0)0,(7 xh .
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Condition for strict t-norm: xxxh ),(7 . 
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Because 1))(2/()(  kxfpxf  for ]1,0[x , then 

xxkffxxh   ))((),( 1

7

and ),(7 yxh generates Archimedian triangular t-norm. 

IV. EXAMPLES OF NEW TRIANGULAR NORMS

Example 1. Let )1/()( xxxf  , )1/()(1 xxxf  . 

Substituting them into (8) we obtain such a new triangular t-
norm: 
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where 0p and the corresponding triangular s -norm

 )1,1(1),( yxTyxS

)1)(1()1()1(

)1()1(

yxxyyxpxy

xyyxpxy




 . 

Example 2. Let )1ln()( xxf  , )exp(1)(1 xxf  . 

Substituting them into (8) we obtain such a new triangular t-
norm: 
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and the corresponding triangular s -norm
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The new obtained triangular norms have the parameter p 
to control their characteristics.

V. CONCLUSION

A new operator for generating Archimedian triangular 
norm is presented. Such constructed operator produces 
parameterized triangular norms. This expands the functional 
characteristics of logical connectives in fuzzy logic. New 
triangular norms are more flexible and can be used as logical 
connectives for fuzzy decision-making systems. 
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