Розробка системи керування напруженістю магнітного поля для процесу знезалізняння технологічних вод

Сафоник Андрій
Кафедра автоматизації, електротехнічних та комп’ютерно-інтегрованих технологій
Національний університет водного господарства та природокористування
Рівне, Україна
a.p.safonyk@nuwm.edu.ua

Таргоній Іван
Кафедра автоматизації, електротехнічних та комп’ютерно-інтегрованих технологій
Національний університет водного господарства та природокористування
Рівне, Україна
targoniy93@ukr.net

https://doi.org/10.31713/MCIT.2021.48

Розв’язано модельну задачу процесу магнітного очищення домішок, яка враховує вплив розмірів реактора, швидкості руху потоку рідини, діаметру гранул фільтруючого матеріалу, напруженності магнітного поля на ефективність очищення технологічних вод. Розроблено комп’ютерну модель процесу очищення технологічних вод з керуванням по статичній характеристиці об’єкта автоматизації. Проведено аналіз ефективності роботи системи при динамічно змінній вхідній концентрації забруднень.

Ключові слова — магнітне осадження; комп’ютерне моделювання; автоматизація процесу фільтрування; напруженість магнітного поля.

I. Вступ

Технологічні води - будь-які води та атмосферні опади, що підходять у водойми з територій промислових підприємств і населених місць через систему каналізації або самопливом, властивості яких виявилися потрібними в результаті діяльності людини [1]. Основною метою очищення технологічних вод є водопостачання. Система водопостачання (населеного місця) або промислового підприємства повинна забезпечувати отримання води з природних джерел, її очищення, якщо це викликає вимогами споживачів, і подачу до місць споживання.

Для видалення феромагнітних домішок з технологічних водних систем запропоновано використовувати метод магнітного осадження домішок в намагніченому зерністому фільтруючому матеріалі. Перевагами даного методу є можливість очищення водного середовища з температурою до 500 °C, швидкісті фільтрування до 1000 м/год, можливість очищення хімічно агресивних середовищ [2–4].

Одним із найменш затратних методів дослідження, що дозволяє здійснити перевірку його відповідності необхідним технічним вимогам є комп’ютерне моделювання [5, 6]. При використанні магнітних фільтрів у системах очистки води виникає необхідність у забезпеченні запланованої концентрації феромагнітних домішок у рідкому середовищі. Крім того для ефективного використання ресурсів та забезпечення виконання основної функції фільтра — очистки, необхідно дослідити вплив концентрації забруднення у рідні, що входить в систему на критичний час роботи фільтра, та перепад тиску, що створюється при цьому, а також провести моделювання процесу магнітного осадження домішок при очищенні як багатоконцентрованих, так і малоконцентрованих водних систем із змінним забрудненням на вході.

II. Матеріали і методи

Для опису процесів вилучення феромагнітних домішок з технологічних вод та їх залиття у фільтрі опишемо наступною моделью задачі[5]:

\[
C_0(x,t) = \begin{cases}
C_0^* \left(t - \frac{\sigma_0 x}{v} \right) & \text{if } \frac{\rho_0 x}{v} \leq t \leq \frac{\sigma_0 x}{v}, \\
0, & \text{if } t < \frac{\sigma_0 x}{v}.
\end{cases}
\]

(1)

де \(C_0(x,t) \) — концентрація домішок в рідкому середовищі, що фільтрується; \(\rho_0(x,t) \) — концентрація домішок осадженних у зерністому фільтруючому матеріалі; \(\beta_0 \) — коефіцієнт, що характеризує масові обсяги осадження домішкових частинок за одиницю часу, \(H \) — напружність магнітного поля, \(v \) — швидкість фільтрування, \(d \) — діаметр гранул фільтруючого матеріалу, \(C_0^* \) — концентрація домішкових частинок на вході фільтра, \(\sigma_0 \) — пористість фільтруючого матеріалу.

Для оцінки ефективності роботи магнітного фільтра з використанням регулятора визначено статичну характеристику об’єкта автоматизації. Для цього у розроблений комп’ютерній моделі шляхом зміни вхідної концентрації забруднення визначено напруженість магнітного поля, яка забезпечує
допустиму концентрацію забруднення в очищений воді. З дослідних даних визначено залежність зміни напругеності магнітного поля від вхідної концентрації залізомісних домішок, що є регулятором в розроблений системи.

III. РЕЗУЛЬТАТИ ТА ОБГОВОРЕННЯ

На рис. 1 приведено комп’ютерну модель магнітного фільтра з врахуванням співвідношення (1-2), яка показує динаміку зміни концентрації забруднення у рідині на виході фільтра з часом при використанні регулятора та при сталій напругеності магнітного поля.

Рисунок 1. Комп’ютерна модель роботи системи магнітного очищення

ВИСНОВКИ

Розроблено комп’ютерну модель магнітного фільтра з керуванням по статичній характеристиці об’єкта автоматизації. Показано, що керування по статичній характеристиці об’єкта при динамічно змінній вхідній концентрації забруднення збільшує час захисної дії фільтра та створює передумови для аналізу ефективності використання різного роду регуляторів.

