
 

 

Сross-platform application for NFT tokens 

 

O. Hladka 

Department of Computer Technology and Economic 

Cybernetics 

National University of Water and Environmental 

Engineering 

Rivne, Ukraine 

o.m.hladka@nuwm.edu.ua  

https://doi.org/10.31713/MCIT.2023.052 

I. Karpovich 

Department of Computer Technology and Economic 

Cybernetics 

National University of Water and Environmental 

Engineering 

Rivne, Ukraine 

i.m.karpovich@nuwm.edu.ua  

M. Opanasiuk 

Master's student 

National University of Water and Environmental Engineering 

Rivne, Ukraine 

opanasiuk_ak19@nuwm.edu.ua  

Abstract—A software application has been developed, 

which is a platform for creating, storing, viewing and 

selling NFT tokens. The object of research is the process 

of managing NFT tokens, the subject of research is the 

development and implementation of the NFT token 

marketplace. The developed application is a micro service 

that includes an API for working with NFT tokens and a 

client part that provides a convenient way to use the 

marketplace for users. The backend part was developed in 

the C# programming language, and the frontend part uses 

React and Redux. OOP methods, the Git version control 

system, namely Github, work with multithread, 

asynchrony and implemented SOLID principles were used 

during development. The application allows users to 

access NFT tokens, perform various operations with them 

and manage tokens. The libraries used in the application 

ensure stability and security in the process of working 

with tokens. This application allows for efficient and 

secure exchange of NFT tokens between different systems 

and users. The developed software product is built 

according to the principle of Clean Architecture, which 

will provide easy further expansion of the scope of the 

project 

Keywords—NFT tokens; blockchain technologies; 

сross-platform application; marketplace; software; Clean 

Architecture. 

I.  INTRODUCTION 

Computer technology today plays an important role 
in the development of new products and services that 
help simplify and improve many aspects of our lives. 
One such innovation is the application of NFT tokens, 
which is a hot topic in today's world, especially in the 
field of cryptocurrencies and blockchain technologies. 
Recently, NFT tokens have become popular among 
artists, musicians, and other creative people, as they 
allow digital creations to be stored and sold as unique 
art objects. NFT tokens can be used to store digital 
assets such as music, videos, photos and other digital 
materials. 

Non-Fungible Token (NFT) is a blockchain 
technology that allows the creation of digital tokens 
that are not fungible one-to-one. Each NFT token has 
its own unique identifier that allows it to be identified 

as a unique object. It allows you to create digital assets 
that can be sold as unique pieces of art, as well as be 
used to store other digital assets such as music, videos, 
photos and other materials. NFTs solve provenance and 
ownership issues. In traditional art or collectibles 
markets, proving a work's authenticity or ownership can 
be a cumbersome process. However, with NFTs, the 
authenticity of a digital asset can be verified using 
blockchain technology and ownership can be easily 
transferred with the click of a button. 

There are several types of NFT tokens used in 
different industries: ERC-721 tokens, which are used 
on the Ethereum blockchain for to create unique art 
objects and other digitals assets; ERC-1155 tokens for 
to create both unique and replaceable tokens that can be 
used in games and other online platforms, etc. 

To facilitate the creation, management and sale of 
NFTs, various applications and platforms have emerged 
in recent years. These platforms enable users to easily 
create, buy, sell and exchange NFTs. In addition, many 
of these platforms offer features such as digital wallets, 
marketplaces, and artist profiles to further enhance the 
user experience. One such platform is OpenSea, a 
popular marketplace for buying and selling NFTs that 
allows users to create and sell their own NFTs, as well 
as view and buy NFTs created by others [1]. 

Despite the presence of such applications, the 
demand for platforms that allow working with NFTs is 
only growing. Because NFT is a revolutionary 
technology that has changed the art and collectibles 
market by enabling the creation and trading of unique, 
verifiable digitals assets. With the increasing popularity 
of NFTs, it is important for individuals and businesses 
to have a comprehensive understanding of their use and 
potential applications. 

The purpose of this research is to create a client-
server application for managing NFTs, and to explore 
how this technology is changing the way digitals assets 
are managed and traded. The object of the research is 
the microservice architecture for managing NFT tokens, 
and the subject of the research is the development of 
the NFT token management system. 

mailto:o.m.hladka@nuwm.edu.ua
mailto:i.m.karpovich@nuwm.edu.ua
mailto:opanasiuk_ak19@nuwm.edu.ua


Modeling, control and information technologies – 2023 

 

II. ANALYSIS OF TECHNOLOGIES OF THE APPLICATION 

A. Server technology stack  

The technology stack used in the NFT token 
application consists of several popular and widely used 
web application development tools and frameworks. 
Since this is a client-server application, two parts were 
developed: backend and frontend. The backend stack 
includes Entity Framework Core, MS SQL Server, 
UnitOfWork and Repository patterns, MediatR pattern, 
JWT authentication, NLog logging, Swagger and the 
Cors engine.  

Entity Framework Core is an object-relational 
mapping (ORM) framework that allows developers to 
work with databases using .NET objects, including MS 
SQL Server, and provides a powerful set of tools for 
querying, updating, and manipulating data [2]. 

MS SQL Server is a relational database 
management system that provides a highly scalable, 
reliable and secure platform for data storage and 
management. MS SQL Server supports advanced 
security features including role-based security, 
encryption and secure communication protocols, which 
is especially important in the context of an NFT token 
application that deals with sensitive data and requires a 
high level of security. MS SQL Server supports 
transactional data processing, which is crucial for the 
application of NFT tokens, where a transaction 
represents the transfer of a unique digital asset from one 
owner to another. MS SQL Server provides a number 
of advanced functionalities, including advanced 
analytics, machine learning and business intelligence, 
which were used to analyze the performance of the 
developed application, as well as to perform advanced 
analytics on the data stored in the database. 

The UnitOfWork and Repository design patterns are 
implemented in our NFT token application using Entity 
Framework Core to ensure data persistence. The 
UnitOfWork pattern is used to manage transactions and 
ensure data integrity and consistency of all changes 
made to the database. The Repository pattern provides a 
way of encapsulating the logic of requests and data 
manipulation, that is, it is responsible for abstracting 
the application's data access level [3]. 

The MediatR pattern is a design pattern that allows 
you to separate communication between system 
components [4]. MediatR is used to implement the 
Command Query Responsibility Segregation (CQRS) 
architectural pattern in our NFT token application. The 
MediatR pattern is responsible for separating the sender 
of the request (i.e. command or request) from the 
recipient of the request (i.e. the handler). This pattern 
ensures that commands and requests are handled by 
separate classes, each of which has a separate 
responsibility. In our application, the MediatR pattern is 
used to implement the business logic of the application 
and ensures that the handler is decoupled from the 
sender, and allows us to change or extend the behavior 
of the handler without affecting the rest of the 
application. 

Together, the UnitOfWork, Repository, and 
MediatR patterns provide a robust and scalable 
architecture for our NFT token application, and ensure 

that the data access layer is abstracted, business logic is 
decoupled, and transactions are atomic and consistent. 

JWT authentication is used in the application to 
securely transfer user authentication data between the 
client and the server. The security method uses JSON 
tags (JWT) to authenticate and authorize users and 
provides a way to securely transfer information 
between the client and the server. This authentication 
method is more secure than traditional methods such as 
cookies and session IDs [5]. 

For logging, the platform uses a flexible and 
extensible logging framework, NLog logging, which 
provides the ability to collect and store data about 
errors, warnings, and other events that occur during 
application execution, and can help diagnose and 
troubleshoot problems. NLog allows developers to log 
different types of messages with different severity 
levels, such as debug, info, warning, error, and fatal [6]. 

Swagger and Cross-Origin Resource Sharing 
(CORS) are two important components in our NFT 
token API application. Swagger is a tool that helps 
create API documentation, allows us to describe the 
structure of our API using YAML or JSON format, and 
automatically generates an interactive interface that 
developers can use to explore and test the API. This 
documentation is important for developers who need to 
integrate with our API because it provides a clear and 
concise overview of the endpoints, their inputs and 
outputs, and any authentication or authorization 
required [7]. 

One of the key benefits of using Swagger in our 
NFT token API application is that it helps standardize 
our API documentation. By defining the structure of 
our API using the OpenAPI specification, we can 
ensure that all of our endpoints are documented in a 
consistent manner. This makes it easier for developers 
to understand our API and create integrations with it. 

CORS is a security mechanism used to restrict web 
applications from accessing resources on another 
domain. In our NFT token API application, we use 
CORS to determine which domains are allowed to 
access our API. This is important for security reasons as 
it helps prevent malicious attacks that could 
compromise our API or its data. In addition, CORS 
provides a standard cross-request control mechanism 
that makes it easier to implement and maintain security 
policies across different parts of our application. 

The backend of the application is implemented in 
the C# programming language, which supports the 
multithreading required to create high-performance 
applications such as an NFT token application that 
requires real-time updates and large amounts of data 
processing. C# supports asynchronous programming, 
which allows you to write code that can be executed in 
parallel without blocking the main thread, resulting in 
faster and more efficient code [8]. 

The advantage of using C# for an NFT token 
application is its compatibility with other programming 
languages and frameworks. C# is designed to work 
seamlessly with other Microsoft technologies, such as 
.NET Core, which is a cross-platform, open-source 
framework that can be used to develop applications for 
Windows, Linux, and macOS. This means that the 



Modeling, control and information technologies – 2023 

 

developed NFT token application can be deployed on 
any platform without any problems. 

The backend API part of the application is 
implemented according to the principle of Clean 
Architecture and contains 5 application levels: 

1) allows you to save the entities that the ORM 
system converts into the corresponding database tables; 

2) saves DB migrations if it is necessary to 
change the parameters of one of the DB tables, so that it 
can be done safely, without data loss; Fluent API 
configurations for objects will also be stored here to 
maintain database integrity as much as possible; 

3) stores services, manually created exception 
handling classes and constants necessary for the 
application in its various parts, which will allow you to 
easily change the value of the constants only in one 
place of the application, without changing them 
throughout the project; 

4) is a level where requests and commands 
implemented by the MediatR pattern are stored; 

5) is the level of processing incoming HTTP 
requests, where the configuration of all application 
services, JWT authentication and actual controllers for 
processing all user requests provided by the system will 
take place. 

B. Stack of interface technologies 

The front-end part is implemented in the TypeScript 
programming language using JavaScript React JS 
libraries in connection with Redux. React JS was used 
to build the user interface because it is based on the 
concept of a virtual Document Object Model (DOM), 
which breaks down a complex interface into 
independent, reusable elements and provides fast and 
efficient interface updates. The Redux library was used 
to manage the state of the application, since the React 
project itself is stateless [9]. Redux offers centralized 
storage of application state in one place "store", which 
simplifies access and update of state, makes it more 
predictable and manageable. Redux also makes it easy 
to add new functionality to an application using 
middleware functions that can intercept and modify 
actions before they reach reducers that change state. 
This allowed us to add logging, asynchronous requests, 
routing, and other features to our application. 

III. CONCLUSIONS 

The implementation of the NFT token marketplace 
application involved a combination of different 
technologies, including Entity Framework Core, MS 
SQL Server, UnitOfWork and Repository patterns, 
MediatR pattern, JWT authentication, NLog logging, 
Swagger, the CORS engine on the backend, and React 
JS, Redux, and Typescript on the frontend. 

One of the main problems during implementation 
were working with asynchrony and multithreaded 
processes. We solved this problem using the MediatR 
pattern, which helped us simplify the implementation of 

asynchronous requests by using a mediator class to 
manage communication between different parts of the 
application. 

The MediatR pattern allowed us to use of request 
and response objects, which simplified us to 
management and control of data flow. UnitOfWork and 
Repository helped us to simplify work with the 
database by providing a standard way to access the DB. 
These patterns have helped us ensure data consistency 
and reliability by providing a single point of access and 
control for all database operations. 

Using Swagger was critical to the implementation 
of the NFT token API application, as Swagger provided 
a user-friendly interface for the application, which 
made it easy for us to test and interact with the API. 
Swagger helped us automate the generation of 
documentation for the API, which made it easier to 
maintain and update the documentation as the 
application evolved. The CORS mechanism was used 
to provide access to the API for clients from different 
domains. All this was achieved by setting appropriate 
headers that allowed cross-requests to be made to the 
API. The mechanism helped improve the usability of 
the application by allowing clients from different 
domains to easily access and use the API. 

Thus, we have combined various technologies and 
skills, in particular the technology stack listed above, to 
create an NFT token application. We have worked for 
the coherence of the technology and solving problems 
related to asynchrony and multi-threaded processes, as 
a result, we have implemented an application 
marketplace. 

REFERENCES 

[1] M.J. Price, “Apps and Services with .NET 7: Build practical 

projects with Blazor, .NET MAUI, gRPC, GraphQL, and other 

enterprise technologies,” Packt Publishing, 2022. 

[2] J.P. Smith, “Entity Framework Core in Action,” Manning, 2018. 

[3] “Unit of Work in Repository Pattern,” [Online]. Available: 

https://www.c-sharpcorner.com/UploadFile/b1df45/unit-of-work-

in-repository-pattern. [Accessed: Octember 16, 2023]. 

[4] A. Shvets, Dive Into Design Patterns: An ebook on design 

patterns and the principles behind them. [Online]. Available: 

https://refactoring.guru/design-patterns/book. [Accessed: 

Octember 16, 2023]. 

[5] I. Gregorchenko, Pros and cons of JWT: a brief overview of the 

intricacies of this technology. [Online]. Available: 

https://highload.today/jwt-auth-json. [Accessed: Octember 16, 

2023]. 

[6] J. Trivedi, Introduction To NLog With ASP.NET Core. [Online]. 

Available: https://www.c-sharpcorner.com/article/introduction-

to-nlog-with-asp-net-core2. [Accessed: Octember 16, 2023]. 

[7] S. Pochekutov, Swagger: what is it and how to work with it? 

[Online]. Available: https://highload.today/swagger-api. 

[Accessed: Octember 16, 2023]. 

[8] J. Albahari, “C# 10 in a Nutshell: The Definitive Reference,” 

O'Reilly, 2022. 

[9] “.NET Technology Stack,” [Online]. Available: 

https://www.qat.com/net-technology-stack/. [Accessed: 

Octember 16, 2023]. 

 

 

https://www.c-sharpcorner.com/UploadFile/b1df45/unit-of-work-in-repository-pattern
https://www.c-sharpcorner.com/UploadFile/b1df45/unit-of-work-in-repository-pattern
https://refactoring.guru/design-patterns/book
https://highload.today/jwt-auth-json
https://www.c-sharpcorner.com/article/introduction-to-nlog-with-asp-net-core2
https://www.c-sharpcorner.com/article/introduction-to-nlog-with-asp-net-core2
https://highload.today/swagger-api
https://www.qat.com/net-technology-stack/

