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Abstract—Satellite-based retrieval of environmental 

variables has seen rapid advancements in recent years, 

although it remains challenged by various sources of 

uncertainty. In this study, we endeavor to enhance the 

accuracy of soil moisture estimation from AMSR imagery 

through parameter calibration. Our focus is on 

calibrating the Dobson dielectric mixing model, a 

component of the radiative transfer model that relies 

heavily on empirical relationships. 

The calibration process is based on black-box 

optimization techniques for the retrieval problem. We 

have adapted the CORS optimization algorithm to 

address the specific characteristics of our task. We also 

considered different target functions for calibration. 

To evaluate the efficacy of our framework, we 

conducted tests across a dataset comprising 118 ground 

stations in the United States. The outcomes reveal that 

optimizing parameter settings can provide limited 

improvement to the accuracy and, when configured 

accordingly, address specific issues such as bias 

correction. Calibration emerges as a potent tool for 

refining surface soil moisture retrievals, although its 

effectiveness tends to diminish in larger calibration areas.  

Keywords—satellite soil moisture; model calibration; 

black-box optimization; Dobson model.  

I.  INTRODUCTION 
Soil moisture (SM) measurement is essential in 

comprehending the hydrological cycle and its 
implications on weather and climate. Precise estimations 
of soil moisture are essential for advancing our 
knowledge of the surface energy budget and research of 
hydrological, ecological and atmospheric processes. 

Remote sensing satellites have emerged as a 
formidable tool in the hydrological community for 
retrieving soil moisture. Despite their capability to 
assess only the topmost soil layer (typically 1–5 cm), it 
nevertheless carries significant importance across 
various environmental domains, encompassing 
hydrology, meteorology, agriculture, and climate 
change. 

Microwave techniques have obtained widespread 
recognition for their potential in routine soil moisture 
retrieval, whether through active or passive sensors. 
Notably, soil moisture retrieval from Advanced 
Microwave Scanning Radiometer (AMSR-E) data has 

exhibited lower accuracy compared to active (e.g., 
Sentinel-1) and active-passive sensors (SMAP). 
Research findings have consistently pointed to 
systematic biases in AMSR-E's soil moisture 
observations. One of the ways to enhance the quality of 
soil moisture retrievals is calibration of LPRM 
parameters [1]. 

In this study, we concentrate on the parameters 
embedded within the Dobson soil-water dielectric 
mixing model. This model, apart from satellite SM 
retrieval, finds application in other soil moisture 
monitoring technologies, such as in-situ soil moisture 
sensors. The Dobson model serves as a means to convert 
sensed dielectric constant values into soil moisture, and 
it has seen calibration adaptations to accommodate 
specific properties such as soil temperature [2], clay 
content [3], and tillage [4]. 

The task of calibrating LPRM requires a cost-
effective optimization algorithm. Given the absence of 
analytical rules that can be derived the model, the task 
necessitates utilization of what is commonly referred to 
as a black-box optimization method. Such methods 
encompass various techniques, some of which are 
exemplified by [5, 6]. A common feature among them is 
incorporation of a surrogate – an approximated 
hyperplane that is subject to optimization instead on the 
original function. This surrogate strategy is effective for 
high-dimensional problems and particularly 
advantageous for dealing with the computational 
expense associated with function evaluations [7]. 

In our specific context, we employ a modified 
CORS algorithm (COordinate search using Response 
Surfaces) [8] to fine-tune the parameters of the Dobson 
model. We propose further adaptations for this method 
to adapt it for calibration tasks. 

II. MODELS AND METHODS 

A. Land Parameter Retrieval Model (LPRM) and 

Dobson model 
Our focus in this study is on soil moisture retrieval 

via the Advanced Microwave Scanning Radiometer 
(AMSR-E), which relies on passive microwave theory 
and employs the Land Parameter Retrieval Model 
(LPRM) to facilitate this process.  

Dielectric mixing models covers the relation 
between soil moisture and dielectric constant, that is 

mailto:m.v.boiko@nuwm.edu.ua


Modeling, control and information technologies – 2023 

further related to brightness temperature. It takes 
advantage of the substantial disparity in dielectric 
constants of dry soil ( ) and water ( ) at 
microwave frequencies [9]. 

 

One of the most popular dielectric mixing models is 
a semi-empirical model developed by Dobson et al. 
[10]. It covers a broad frequency range, between 1.4 and 
18 GHz, and provides both the real and imaginary 
components of the dielectric constant in terms of the soil 
texture (% sand, silt and clay), bulk density and 
volumetric soil moisture [9]. According to the semi-
empirical formulation of Dobson model, complex 
dielectric constant  is calculated as 

 

 

(1) 

where  is volumetric soil moisture,  is complex 
dielectric constant of the water contained in the soil,  
– soil bulk density. Coefficients  in (1) are 
empirical parameters estimated as follows (according to 
[11]): 

 
 

 

(2) 

The key factor determining dielectric constant of 
water is soil temperature. They are linked through the 
static dielectric constant of water , empirically 
calculated as 

 
 

(3) 

where T is soil temperature. 
Relations (2), (3) are deciding in estimating soil 

dielectric constant. Therefore, we selected the empirical 
coefficients in these relations as target for calibration. 
Empirical parameters  are the most obvious candidates 
for calibration, since they determine the model response 
to the soil composition. Moreover, we add soil bulk 
density  as another important soil parameter that is 
already in use by the model. The changes to parameter  
are suggested in a number of studies, including [2]. As 
for the temperature dependent dielectric constant of 
water , more accurate temperature response might 
help to adapt the model to actual climatic conditions. 
The chosen calibration ranges for parameters are given 
in Table 1. 

TABLE I.  CHOSEN CONSTRAINTS FOR CALIBRATION OF THE 

DOBSON MODEL PARAMETERS 

B. Modified CORS calibration algorithm 

We seek to calibrate the semi-empirical Dobson 
model for optimal alignment with in situ soil moisture 
data. This calibration involves minimizing soil moisture 
estimation errors within the Land Parameter Retrieval 
Model (LPRM), which is computationally intensive and 
implicitly defined, necessitating the use of an efficient 
black-box optimization algorithm. 

CORS (COordinate search using Response Surfaces) 
is our chosen algorithm for constrained, costly black-
box optimization. It employs radial basis function (RBF) 
surrogates to approximate the objective function, 
controlling the time cost by defining a specific number 
of expensive function calls. This allocation is divided 
into two phases: 
1) Initialization Phase: Here, the algorithm evaluates 

the function at randomly selected points to 
construct an initial surrogate function. The most 
promising points are then identified. 

2) Refinement Phase: Building on the promising 
points, the algorithm iteratively suggests new 
points optimized by the surrogate hyperplane. 
These points are evaluated for function values and 
contribute to the ongoing refinement of the 
surrogate. This process continues until remaining 
resource of points is exhausted. 

The necessary prerequisite for applying the above 
technique is to normalize the value constraints of all 
calibrated parameters to a range of [0; 1]. This 
normalization transforms the search space into a 
uniform unit cube, ensuring consistent distances for 
surrogate optimization.  

The initial set of points has to be distributed evenly 
across the problem space. Original implementation of 
the algorithm implemented Latin hypercube approach 
for point spacing. However, we found that in case of 
high dimensionality the Poisson disk sampling method 
produces a more even distribution of points. This 
algorithm is notable for ensuring that points are located 
no closer to each other than a pre-set minimum distance, 
resulting in a more intuitive distribution [12].  

The original algorithm also suggests that the given 
number of function calls should be split equally between 
initial and refinement points. After experimenting with 
the point division, we found that increasing the number 
of initial points above a specific number provides no 
additional improvement to final result. In our case, 50 
points proved enough for a reasonably good initial 

Parame-

ter 
Term 

Default 

value 

Calibration constraints  

Minimum Maximum 

alpha 1 0.65 0.6 0.7 

beta1 

1 1.270 1.143 1.397 

sand -0.519 -0.571 -0.467 

clay -0.152 -0.167 -0.137 

density 0 -0.1 0.1 

beta2 

1 2.06 1.864 2.266 

sand -0.928 -1.021 -0.835 

clay -0.255 -0.281 -0.230 

density 0 -0.1 0.1 

ew0 

1 88.045 79.241 96.850 

T -0.414 -0.456 -0.373 

T2 0.00063 0.0004 0.00075 

 

Figure 1.  Schematic representation of the key steps in the Land 

Parameter Retrieval Model (LPRM). Soil moisture is calculated 

by matching the observed brightness temperature with the 
model-predicted brightness temperature from radiative transfer 
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distribution. The remaining points (25 at least) are used 
to refine the initial estimation. 

Also, a number of other minor modifications to the 
algorithm proposed in [8] was introduced. We removed 
normalization step before estimation of target function, 
since SM values are already contained within the [0; 1) 
interval and additional scaling could lead to 
misinterpretations. Multiquadric radial basis function 
was chosen for surrogate approximation, and the initial 
SLSQP optimization method was replaced by Nedler-
Mead. 

C. Example test of optimization method 

Before embarking on the actual validation 
experiment, we conducted a preliminary assessment of 
our modifications using a theoretical problem. The task 
involved optimizing the valley function defined as 

 
While the optimal solution of the problem is obvious 

analytically, functions with valley-like characteristics 
are well-known for posing significant optimization 
challenges.  

In Figure 2, we present simulation details for both 
the original and adapted algorithms, considering a 
limitation of 100 points. Our modified algorithm 
produced a better solution by focusing on local minima 
points identified through the initial distribution. 
Conversely, the original algorithm extensively explored 
a more diverse set of points, leading to the inability to 
reach the optimal solution within the prescribed number 
of points. 

D. Experimental setting 

In this study, we take disaggregated AMRS-2 L-
band satellite imagery. The image data are processed 
with LPRM model to estimate surface SM. These results 
are further denoted as reference values. Both the 
reference and values produced after model calibration 
are validated against ground data using the following 
metrics: root mean squared error (RMSE), correlation 
(R), average relative error (ARE) and index of 
agreement (IoA). 

To validate our results, we utilize in-situ sensor data 
sourced from the International Soil Moisture Network 
(ISMN) [13]. Due to technical reasons, we selected for 
analysis a single imagery tile in North East of the USA, 
comprising the area between 41.35° and 49.65° latitude 
and between -116.2° and -107.25° longitude, with a total 
of 118 ground stations. For both satellite imagery and 
in-situ datasets we use records for the whole length of 
2015. 

III. RESULTS 
We perform calibration with different target metrics: 

RMSE, ARE and correlation, as well as evaluation of 
reference values. Summary of validation results is 
presented in Table 2. Here units for RMSE, ARE and 
bias are the same as SM units, m

3
·m

-3
. 

 

The metrics presented in Table 2 indicate that 
calibration can only achieve partial improvement. 
Correlation between the satellite retrievals and ground 
data is very low in the selected region due to the terrain 
complexity and presence of different soil types. 
Moreover, results for ARE metric are extremely high 
due to the fact that SM values can be close to 0.  

The results vary greatly with chosen calibration 
metric. Calibration improves result for the target metric, 
yet this is achieved at expense of other characteristics. 
Therefore, the choice of target metric must be made 
according to the desired properties of the result. RMSE 
is the most stable metric for removing bias and variation 
errors. Correlation should be chosen if general 
agreement of trends is the priority. Surprisingly, ARE 
proved to be a good conservative metric that provides 
improvement without loss of agreement.  

 
TABLE II.  VALIDATION RESULTS FOR SM SATELLITE 

ESTIMATES, INCLUDING REFERENCE VALUES AND CALIBRATED BY 

RMSE, ARE AND CORRELATION 

 
 
 
 
 
 
 

 
Further, we investigate the influence of calibration 

of the final result. For this purpose, we select one of the 
ground stations from the dataset and compare the 
estimated SM values before and after calibration. Fig. 3 
shows the time series of actual, reference and calibrated 
SM on station McAlister Farm. 

Calibration 

metric 
RMSE ARE R IoA 

Reference 0.157 1.152 0.087 0.436 

RMSE 0.114 4.979 -0.110 0.244 

ARE 0.153 0.674 -0.103 0.436 

R 0.171 1.267 0.126 0.449 

 

 

Figure 2.  Performance of the original (top) and modified 

(bottom) optimization algorithms for a valley function 
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The moisture trends on Fig. 3 indicate that 
calibration is capable of shifting the estimates in a way 
that is close to linear scaling, with occasional deviations. 

The initial reference estimate underestimated actual soil 
moisture, but calibrated version attempts to remove this 
obvious bias. However, the estimated trend remains 
largely unchanged. This example agrees with our 
previous results in the fact that correlation cannot be 
greatly improved with parameter calibration. Instead, 
target metrics that compare actual values (such as 
RMSE and ARE) can decrease bias and yield overall 
better results.  

IV. CONCLUSION 
In this study, we calibrated Dobson model to 

improve soil moisture estimation from AMSR satellite 
data. We applied a surrogate-based optimization 
algorithm to determine optimal parameters of the model. 
We also proposed modifications to the CORS 
optimization algorithm, which have demonstrated their 
effectiveness for the functions of high complexity with 
multiple local minima.  

The findings strongly suggest that calibrating 
components within the Land Parameter Retrieval Model 
presents an effective approach for mitigating bias in soil 
moisture estimates. This calibration method is most 
effective at the local or regional level. 

The choice of an appropriate target function for 
calibration emerges as a critical factor in achieving 
specific optimization objectives, whether it involves 
enhancing agreement or removing bias. This flexibility 
enables tailored results aligned with specific research 
goals. 
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