Some approximate properties of Cesaro means Fourier series

Mzevinar Bakuridze
Batumi Shota Rustaveli State University, BSU
Batumi, Georgia
mzevinar.bakuridze@bsu.edu.ge

https://doi.org/10.31713/MCIT.2023.003

Alexsander Bakuridze
Batumi Shota Rustaveli State University, BSU
Batumi, Georgia
alexsander.bakuridze@bsu.edu.ge

Khatia Japaridze
Batumi Shota Rustaveli State University, BSU
Batumi, Georgia
khatia.japaridze@bsu.edu.ge

Abstract- It is established $\sigma_{n}^{a}(x, f)$ Cesaro means some approximate features. The paper discusses the new property of the negative order Cesaro mean of the Fourier trigonometric series.

Keywords- Chesaro means; Fourier trigonometric series.

I. InTRODUCTION

Suppose, that $T=[-\pi, \pi]$ and $f: R \rightarrow R \quad 2 \pi$ - are periodic functions. If $f \in L(T)$ as a rule, $\sigma(f)$ represent respectively trigonometric Furrier series

$$
\begin{equation*}
\sigma[f](x)=\frac{a_{0}}{2}+\sum_{k=1}^{\infty} a_{k} \cos k x+b_{k} \sin k x, \tag{1}
\end{equation*}
$$

where

$$
\left.\begin{array}{l}
a_{k} \equiv a_{k}(f)=\frac{1}{\pi} \int_{T} f(t) \cos k t d t, \quad k \in N_{0} \\
b_{k}=b_{k}(f)=\frac{1}{\pi} \int_{T} f(t) \sin k t d t, \quad k \in N \tag{2}
\end{array}\right\}
$$

Assume that $p \in[1,+\infty[$ - is a number. For each function $f \in L^{p}(T)$ the following will be considered

$$
\begin{equation*}
\|f\|_{p}=\left\{\frac{1}{2 \pi} \int_{T}|f(t)|^{p} d t\right\}^{\frac{1}{p}}, \tag{3}
\end{equation*}
$$

And also it will consider the following: $L^{\infty}(T)=c(T),\|f\|_{c}=\|f\|_{\infty}=\sup _{x \in T}|f(x)|$. Let us set

$$
\begin{gathered}
\omega^{(k)}(\sigma, f)=\sup _{|h| \leq \sigma}\left\|\sum_{j=0}^{k}(-1)^{k+j}\binom{k}{j} f(t+j h)\right\|_{p} ; \\
\sigma \in] 0,2 \pi]
\end{gathered}
$$

$\omega^{(k)}(\sigma, f)$ is called module L^{p} of smoothness of an order to function f.
II. MAIN PART

In the future we will assume that $\omega^{(1)}(\sigma, f)_{p} \equiv \omega(\sigma, f)_{p}$.

BellowA, $A(f) \quad A(f, p), \quad A(f, a, p), \quad A(a)$, $A_{1}(a), \ldots$ indicate absolute positive or positive constants depending only on the specified parameters.

Let ω-be module of continuity. Assume that

$$
H_{p}^{\omega} \equiv H_{p}^{\omega}(T)=\left\{f: \omega(\sigma, f)_{p} \leq A(f, p) \omega(\sigma)\right\}
$$

and $H_{p}^{\omega}=H^{\omega}$. If $\left.\left.\omega(\sigma)=\sigma^{\alpha}, \alpha \in\right] 0,1\right]$, than $H_{p}^{\omega} \equiv \operatorname{Lip}(a, p) . \quad H^{\omega} \equiv \operatorname{Lipa}$.

With $S_{n}(x, f)$ we will define, respectively partial sums of the series

$$
\begin{align*}
S_{n}(x, f) & =\frac{a_{0}}{2}+\sum_{k=1}^{n} a_{k} \cos k x+b_{k} \sin k s= \\
& =\frac{1}{\pi} \int_{T} f(x+t) D_{n}(t) d t \tag{4}
\end{align*}
$$

where $D_{n}(t)$ - is Dirichlet kernel, i.e.

$$
\begin{equation*}
D_{n}(t)=\frac{1}{2}+\sum_{k=1}^{n} \cos k t=\sin \left(n+\frac{1}{2}\right) t / 2 \sin \frac{t}{2}, \tag{5}
\end{equation*}
$$

and $D_{n}(0)=n+0.5, n \in N$.
Consider that

$$
\begin{gather*}
A_{k}^{a}=1, \quad A_{k}^{a}=\frac{(a+1)(a+2)(a+3) \ldots \ldots(a+k)}{k!}, \tag{6}\\
k \in N, a>-1 .
\end{gather*}
$$

It is known (see e.g. A. Sigmund [7], pp. 130-131) that

$$
\begin{gather*}
A_{k}^{a}=\sum_{i=0}^{k} A_{k-i}^{a-1}, A_{k}^{a}-A_{k-1}^{a}=A_{k}^{a-1} \tag{7}\\
A(a) \leq \frac{A_{k}^{a}}{k^{a}} \leq A_{1}(a) . \tag{8}
\end{gather*}
$$

If

$$
\begin{equation*}
K_{n}^{a}(t)=\frac{1}{A_{n}^{a}} \sum_{k=0}^{n} A_{n-k}^{a-1} D_{k}(t) \tag{9}
\end{equation*}
$$

than they are respectively called Chesaro kernel. It is known that (see e.g. A. Sigmund [2] pp. 157-164), that

$$
\begin{equation*}
K_{n}^{a}(t)=\varphi_{n}^{a}(t)+r_{n}^{a}(t), \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi_{n}^{a}(t)=\frac{\sin \left[\left(n+\frac{1}{2}+\frac{a}{2}\right) t-\frac{a \pi}{2}\right]}{A_{n}^{a}\left(2 \sin \frac{t}{2}\right)^{1+a}} \tag{11}
\end{equation*}
$$

and

$$
\begin{gather*}
\left\|K_{n}^{a}\right\|_{c} \leq A(a) n \tag{12}\\
\left|\tau_{n}^{a}(t)\right| \leq \frac{A(a)}{n t^{2}}, \frac{\pi}{n} \leq t \leq \pi \tag{13}
\end{gather*}
$$

In what follows we shall use the Holder inequality for integrals. If $f_{1} \in L^{p}(T), f_{2} \in L^{q}(T)$ and $\frac{1}{p}+\frac{1}{q}=1$, than

$$
\begin{equation*}
\left\|f_{1} f_{2}\right\|_{L} \leq\left\|f_{1}\right\|_{p}\left\|f_{2}\right\|_{q} \tag{14}
\end{equation*}
$$

We also use the Minkowski inequality. If $f_{1} \in L^{p}(T), f_{2} \in L^{p}(T), \quad p \in[1,+\infty[$, than

$$
\begin{equation*}
\left\|f_{1}+f_{2}\right\|_{p} \leq\left\|f_{1}\right\|_{p}+\left\|f_{1}\right\|_{p} \tag{15}
\end{equation*}
$$

Assume that function $f \in L(T)$ than $\sigma_{n}^{a}(x, f) t_{n}^{a}(x, f)$ symbols denotes the Chesaro means of order $a>-1$ consequently $\sigma[f]$ i.e.

$$
\begin{equation*}
\sigma_{n}^{a}(x, f)=\frac{1}{A_{n}^{a}} \sum_{k=0}^{n} A_{n-1}^{a-1} S_{k}(x, f), \tag{16}
\end{equation*}
$$

where $A_{n}^{\alpha} \quad(i=1,2, \ldots)$ and $S_{k}(x, f)$ are given to relations (6) and (4). Using the equalities (4), (5), (9) and (16), we can write

$$
\begin{align*}
& \sigma_{n}^{\alpha}(x, f)=\frac{1}{\pi} \int_{T} f(x+t) K_{n}^{\alpha}(t) d t= \\
& =\frac{1}{\pi} \int_{T}[f(x+t)+f(x-t)] K_{n}^{\alpha}(t) d t \tag{17}
\end{align*}
$$

Zigmund proved that if the function $f \in c(T)$ and

$$
\begin{equation*}
\left.\omega(\delta, f)_{c}=\overline{\overline{\mathrm{O}}}\left(\delta^{\alpha}\right)(\delta \rightarrow+0), \quad \alpha \in\right] 0 ; 1[\tag{18}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\sigma_{n}^{-\alpha}(f)-f\right\|_{c}=0 \tag{19}
\end{equation*}
$$

In the writings of Hardy and Littlewood mentioned provision was generalized, in particular, they showed that if $f \in c(T)$ and

$$
\begin{equation*}
\left.\omega(\delta, f)_{p}=\overline{\overline{\mathrm{O}}}\left(\delta^{\alpha}\right)(\delta \rightarrow+0), \quad \alpha \in\right] 0 ; 1[, \quad \alpha p>1 \tag{20}
\end{equation*}
$$

then it is executed (19). They showed that when

$$
f \in c(T) \cap \operatorname{Li} p(\alpha, p), \quad \alpha \in] 0 ; 1[, \quad \alpha p>1,
$$

Then for any $\beta \in] 0 ; \alpha[$ numbers the following ratio is valid yeah

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\sigma_{n}^{-\beta}(f)-f\right\|_{c}=0 \tag{21}
\end{equation*}
$$

Our goal is to evaluate the above expression

$$
\left\|\sigma_{n}^{\alpha}(x, f)-f\right\|_{c} .
$$

With the help of the modules of continuity of space $c(T)$ and $\mathrm{L}^{p}(T)$. These estimates will be taken some new position in relation to the behavior $\sigma_{n}^{\alpha}(x, f)$ means.

III. CONCLUSION

The following in true
Theorem.
Let $a \in] 0,1]$ - a curtain number $a p=1, \beta \in] 0, a[$ and $0<\lambda<0.5$.

If $\lambda \geq 1 /(1+a)$ than for the function $f \in c(T)$ the following inequality is true

$$
\begin{gathered}
\left\|\sigma_{n}^{-\beta}(f)-f\right\|_{c} \leq A(a, \beta)\left[\omega^{\lambda(a-\beta)}\left(\frac{1}{n}, f\right)_{c}\right]+ \\
+\left[1+n^{a} \omega\left(\frac{1}{n}, f\right)_{p}\right]+A(\beta) g(n, f)
\end{gathered}
$$

The given theorem represents a new property of the Cesaro mean of the negative order of the trigonometric Fourier series.

REFERENCES

[1] A. Zigmund, "Trigonometric series," 3rd ed., Cambridge: Cambridge University Press, 1965.
[2] G.G. Xardi, D.E. Littlvud, and G. Polya, "Inequalities," 2nd ed., Cambridge: Cambridge University Press, 2001.
[3] L.V. Zhizhiashvili, "Some problems about trigonometric series and its conjugates," Tbilisi: Tbilisi University Press, 1993 (in Russian).
[4] M.S. Bakuridze, "Some approximate properties of Cesaro mean Fourier series and their conjugates," International Journal of Engineering Science and Innovative Technology, vol. 4(6), 2015.
[5] M.S. Bakuridze, "Some approximate properties of Cesaro mean Fourier series and their conjugates," International Journal of Engineering Science and Innovative Technology vol. 5(4), 2016.
[6] M.S. Bakuridze and A.S. Bakuridze, "Some approximate properties of Cesaro mean Fourier series," International Journal of Engineering Science and Innovative Technology, vol. 7(3), 2018.

