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Abstract – A physical-mathematical model is proposed 
for analyzing the process of drying the bed of one-type 
granular materials in a convective drying chamber under 
the action of a drying agent in order to optimize this 
process and reduce the percentage of grain damage. The 
basic relations of the coupled problems of mechano-
diffusion and mass transfer for the considered grain are 
written, taking into account the heterogeneity of the grain 
structure (core and coat) and its position in the bed. The 
moisture concentration and the radial displacement vector 
are chosen as determining functions. On the basis of the 
obtained solutions of changes in moisture concentration in 
grain over time, taking into account the heterogeneity of 
the grain structure and the rate of blowing the drying 
agent for the intergranular medium, a numerical analysis 
of changes in moisture concentration, temperature, 
displacements and deformations in grain over time are 
carried out, taking into account taking into account the 
physical and chemical characteristics of the grain. It is 
found that the temperature of the drying agent has the 
greatest influence on drying (movement, deformation, 
grain stress). 

Keywords – physico-mathematical model, drying 
process, granular materials, convective drying chamber, 
optimization, grain damage, interconnected equations 

I. INTRODUCTION

Grains, by their structure, are capillary-porous 
colloidal bodies [1], in which the mechanism of mass 
transfer during dehydration is determined by the form 
and energy of moisture bonding with the material, its 
structure, moisture content, and drying conditions. The 
work [2] analyzes the factors determining the 
technological properties of grain during post-harvest 
processing. The physicochemical properties of grain 
depend on external conditions that change during 
drying, hydrothermal processing, and grain storage. 
Grain is a physiological culture consisting of an embryo, 
endosperm (kernel), and husks. The morphological 
structure (thickness of husks and aleurone layer), 
vitreosity, and chemical composition (content of 
proteins and starch) of wheat grain were studied in the 
work [3]. Internal moisture transfer in the grain is purely 
diffusive [4]. Water permeability changes the structural-
mechanical properties of the endosperm, and contributes 
to the formation of microcracks, and its loosening. The 
difference in the structure of husks and endosperm 
affects not only the absorption or removal of moisture 
but also physicochemical processes that change the 
volume of grain and the structure of the endosperm, 

therefore, it is necessary to account for this 
heterogeneity in the models describing processes of 
grain treatment. One more problem is that protein in 
grain at temperatures above permissible, undergoes 
denaturation, reducing its ability to swell, which is 
important for seed germination. Thus during drying it is 
important to prevent such a denaturation as well as 
traumas of the grain in general. According to scientists, 
each percentage of injuries in the seed material reduces 
its yield [5]. Therefore, mathematical modeling of grain 
drying processes in convective chambers is an urgent 
scientific task due to its practical importance in the 
agriculture and food industry. The model presented in 
this work is aimed at facilitating the development of 
efficient drying technologies, leading to improved grain 
preservation and reduced post-harvest losses. The main 
theoretical principles and methods of modeling 
convective drying are presented in the work [6]. 

II. FORMULATION OF THE PROBLEM AND GOVERNING 
SYSTEM OF EQUATIONS 

We consider a layer of thickness L, which is 
composed of identical moist grains of radius R, and it is 
referred to the Cartesian coordinate system so that the 
Oz axis is perpendicular to its surfaces. Each grain is 
considered a two-layered sphere, so-called, of an 
equivalent volume, which is referred to a spherical 
coordinate system with the origin at its center (r=0). The 
drying process of the sphere occurs through its outer 
contact surface r=R with the intergranular medium. The 
moisture concentration cz at the location of the selected 
grain along the layer thickness z will be determined 
from solving the mass transfer problem in the 
intergranular space, where the air-vapor mixture is 
uniformly filtered in the mode of complete 
displacement. 

We consider each sublayer of the sphere as a two-
component solid solution consisting of particles of the 
main component (matrix) and water. Under isothermal 
conditions, the determining functions are taken to be the 
vector of radial displacements ( )i

ru and the moisture
concentration ( )ic . Then, for each individual sphere, 
these functions are found from the solution of the 
coupled equations of mechano-diffusion, which in the 
spherical coordinate system take the form: 
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where ( )( ) ( ) ( ) ( )= 3 / 3 4i i i iK K Gξ +  is the mechanical

constant, ( ) ( ) ( )= / 2 /i i i
r ru r u rε ∂ ∂ + ; ( )iD  is the diffusion 

coefficient; ( )iDε  is the coefficient of the influence of the 
gradient of the volume deformation field on the mass 
flow; ( )iK  is the bulk modulus; ( )iG  is the shear 
modulus; ( )iβ  is the concentration coefficient of 
volumetric expansion; τ  is time. Here, the index i=1 
corresponds to the inner area ( )*0 r r≤ ≤ , and i=2 

corresponds to the outer area ( )*r r R≤ ≤  of the sphere. 

We assume that at the initial time ( )= 0τ , radial 
displacements are zero, and concentrations are constant: 

( ) = 0i
ru , ( ) ( )

0=i ic c  ( )= 1,2i . (2) 

On the surface of the sphere =r R , which is free 
from external loads, the condition (2)ˆ 0nσ ⋅ =

 , where
σ̂  is the stress tensor, n  is the normal to the surface, is
written as follows [7]: 
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We assume that the density of the diffusion flow at 

the surface of the sphere (2)
RJ  is proportional to the 

difference in moisture concentrations at the surface of 
the grain (2)

Rc  and in the intergranular space zc , i.e., 
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Here, k  is the mass transfer coefficient. 

The moisture transfer equation in the intergranular 
space of the layer is as follows [8]: 

2
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where υ  is the velocity of movement of the air-vapor 
mixture in the layer;  zD  is the moisture diffusion 
coefficient in the intergranular medium; RJ Jα=  is the 
intensity of the local moisture source due to 
evaporation from individual grains, α  is a coefficient 
depending on the size of the grains (radius) and their 
packaging (cubic, volume-centered, or face-centered, 
etc.) [7]. 

The process of convective diffusion in the 
intergranular space of the layer, composed of identical 
grains, is much faster compared to the process of 
moisture diffusion from the volume of the grain to its 
surface. Therefore, we will further analyze the drying 

process of the layer in a quasi-static approximation, i.e., 
we will determine the moisture concentration cz from the 
solution of the equation 

2

2 = 0z z
z

d c dcD J
dzdz

υ− + (6) 

in which the function J is known function of time. Eq. 
(6) is solved under the boundary conditions:

=0 == 0, = n
z z z z L zc c c .  (7) 

Here n
zc  is the concentration of saturated vapor at the 

selected temperature. 

III. ALGORITHM DEVELOPMENT FOR THE MOISTURE
CONTENT DISTRIBUTION PROBLEM 

Let us denote 
( ) ( )( , , ) = ( ) ( , , )i i

zr z c z c r zϑ τ τ− .  (8) 
Then the system (1) we write in the following form 
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where ( ) ( ) ( ) ( ) ( )=i i i i iD D Dεξ β−  is an effective diffusion
coefficient. In this case, the initial and boundary 
conditions take the form [7] 
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Here H kR D= .
Equality of flows at the interfaces of the sublayers 

of the grain *=r r  gives us 
(1) (2)

(1) (2)D D
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Solution of the boundary value problem (9)-(11) we 
search in the form: 

( ) ( ) ( )= ( ) ( )i i ir r Tϑ τΘ .  (12) 
For the functions ( ) ( ),i iTΘ , we have 
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where µ  is the parameter of the problem. 
The solutions to these equations are functions [7] 

( ) ( )( ) ( ) ( ) ( ) ( )= cos sin ,i i i i iA r B rλ λΘ +     

( ) 2( ) ( )= ,i iT K e µ ττ −
 (14) 

which, using the dimensionless variable = /r r R , can 
be written as [7] 

( ) ( ) ( )( ) ( ) ( )( )= cos sin ,i i i i i
R RA r B rλ λΘ +    
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where ( ) ( ) ( ), ,i i iA B K    are constants, ( ) ( )= /i i
j j Dλ µ  ,   

( ) ( )=i i
R Rλ λ . 

For the region *0 <r r≤ , taking into account the 
boundedness of the solution ( , )r τϑ , if = 0r , we put 
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while in the region *r r R≤ ≤  we have [7] 
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Here ( ) ( ),i i
j jA B  are the coefficients of the expansion of 

( ) ( ),i iA B   in a series with respect to the eigenvalues jµ  
of the corresponding characteristic equation obtained 
from the conditions (9), (10). We have 
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Expanding the determinant (20), we obtain the 
characteristic equation of the problem 
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Let us note that as *r  approaches zero, we obtain the 
characteristic equation [9] for a homogeneous sphere. 
By the roots Rjλ  of this equation, we find 
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jλ . 

The roots 1 2, ,..., jµ µ µ  of the characteristic equation 
(21) are real values. To each root corresponds a
solution of equations (16) and (17) as follows:
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It is easy to see that the constants (2) (2) (1), ,j j jA B B  
corresponding to the root jµ  are related to the algebraic 
complements by the relations: 
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determine the coefficients Mj [10]. 
Using jM  defined by the relation (24), we can find 

(2) (2) (1), ,j j jA B B . The moisture concentration in an 

individual grain depending on its position coordinate z  
within the layer is determined by the formula (8): 

( ) ( )( , , ) ( ) ( , , )i i
zc r z c z r zτ ϑ τ= − . To determine ( )zc z , it 

is necessary to solve Eq. (6) with the corresponding 
boundary conditions. 

IV. COMPUTER ANALYSIS OF CONVECTIVE DRYING

Based on these solutions, changes in moisture
concentration in the grain depending on the air blowing 
velocity, the location of the grain in the layer, and the 
thickness of the wheat endosperm was studied. The 
following experimental data were taken into account for 
the calculation: moisture concentration at the initial time 

4
0 = 5 10c −⋅ kg/m3; grain layer thickness = 1000L  mm; 

grain volume = 16.77V  mm3; effective moisture 
diffusion coefficient (2) 3= 1.34 10D −⋅  mm2/s; reduced 
mass transfer coefficient 7= 10H − ; equivalent grain 
radius = 2.00086R  mm; Fourier number 

7= 2.00086 10Fo −⋅ ; diffusion coefficient 2= 10zD
mm2/s; saturated vapor concentration 3= 1.34 10n

zc −⋅ ; 
mechanical constant = 3 / (3 )K K Gξ + = 0.5; = 0.2ν ; 

3= 16.4 10E ⋅  g/mm2; volumetric expansion 
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4= 2.71389 10β −− ⋅  mm/s; shear modulus 
3= 6.8333 10G ⋅  g/mm2; bulk modulus 

3= 9.11111 10K ⋅  g/ mm2; the heterogeneity boundary 
* = 0.9r R . 

Fig. 1. Moisture concentration distribution over time in a grain`s 
core r=0.05R for different values of υ =1, 2, 3, 4, 5 for z =0.5 

After the first hour of drying the grain with the 
rate of blowing υ =1 and 2, we observe moisture 
accumulation inside the grains, the magnitude of which 
even exceeds the initial moisture content of the grain 
(Fig. 1, blue and orange curves). During two hours, 
there is rapid drying of the material, which continues 
into the third and fourth hours, but not as intensively. 
By the fifth hour of drying, it reaches a steady state. 

Fig. 2. Moisture concentration distribution over time in a grain`s 
coat r=0.95R for different values of  values of υ =1, 2, 3, 4, 5 for 

z =0.5 

In contrast, in the coat, moisture gradually begins to 
decrease after the first hour of the process for most 
rates of blowing (Fig. 2, orange, green and red curves). 
Further on, the drying processes in the core and the coat 
synchronize. The most effective drying of the grain 
occurs with the rates of blowing υ =4, 5 (Fig. 1, 2 
violet and red curves). 

V. CONCLUSIONS

A physical-mathematical model is proposed for 
optimizing the drying process of homogeneous granular 
materials in a convective chamber to reduce grain 
damage. Relations for mechano-diffusion and mass 
transfer, considering grain structure heterogeneity, are 
outlined. Moisture concentration and radial 
displacement are key functions. Numerical analysis 
reveals a significant impact of the blowing rate of the 
drying agent on drying. Knowing the changes in 
moisture concentration and temperature, we can 
determine the stress-strain state of the grains, which 
allows for adjusting the drying process in convective-
type drying plants to prevent grain cracking by not 
exceeding the grain's strength limit during drying. 
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