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The article investigates a mathematical model of the 
immune response to an infectious disease, considering external 
factors that influence the course of the disease. Stationary 
solutions and their existing conditions have been identified, 
along with their medical interpretation and sufficient 
conditions for asymptotic stability. 
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Mathematical immunology aims to utilize 
mathematical methods and information technologies to 
model immune processes, enabling their study and 
prediction. The adequacy of the mathematical model of 
the immune response significantly depends on the 
mathematical formulation, particularly on the selection of 
factors that influence the immune response in an 
infectious disease. 

This field of applied mathematics has been actively 
developing since the works of G. Bell. A foundational 
model is G.I. Marchuk's mathematical model of the 
immune response to an infectious disease, proposed in 
1975 [1]. Several significant results have been obtained 
in the works of U. Forish and M. Bodnar [2], V.P. 
Martsenyuk and O.H. Nakonechnyi [3], A.Ya. Bomba 
[4], S. Rusakov [5], among others. 

In this study, the research presented in [6] has been 
continued, focusing on the impact of external factors on 
the immune response to an infectious disease, which is 
modeled as a solution to the generalized Hutchinson 
model 
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where 𝑑𝑑(𝑡𝑡)  is the integrated dimensionless factor of 
external influence, such as environmental pollution, 0 ≤
𝑑𝑑(𝑡𝑡) ≤ 1, 𝑟𝑟 > 0  is the linear growth coefficient,  0 < Δ 
is the average time for ecological equilibrium 
restoration,   𝑛𝑛 > 1  and provides flexibility in describing 
the dynamics of the process. 

If the condition 
0 < rnΔ <

π
2

(2) 

is satisfied, it has been proven that the stationary solution 
𝑑𝑑 = 𝑑𝑑∗ is locally asymptotically stable. 

A generalization of G.I. Marchuk's model includes 
considering the influence of the factor 𝑑𝑑(𝑡𝑡)  on the 
formation of the plasma cell cascade 𝐶𝐶(𝑡𝑡) and the extent 
of damage to the target organ 𝑚𝑚(𝑡𝑡), 0 ≤ 𝑚𝑚(𝑡𝑡) ≤ 1. The 
mathematical model takes the form: 
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where 𝑑𝑑(𝑡𝑡)  is the population of antigens (viruses, 
bacteria, etc.), 𝛾𝛾(𝑡𝑡) is the population of antibodies, 0 <
𝜏𝜏 is the time required for the formation of the plasma cell 
cascade, 𝑑𝑑τ(𝑡𝑡) = 𝑑𝑑(𝑡𝑡 − τ),𝛾𝛾τ(𝑡𝑡) = 𝛾𝛾(𝑡𝑡 − τ), ξ(𝑚𝑚) =
1 when 0 ≤ 𝑚𝑚 ≤ 𝑚𝑚∗, while ξ(𝑚𝑚) = 1 + (𝑚𝑚 − 1)/
(𝑚𝑚∗ − 1)  for  𝑚𝑚 > 𝑚𝑚∗,  where the stationary solution 
does not exist due to immune system dysfunction. 

Theorem 1. If the coefficients of the mathematical 
model (1), (3) are non-negative numbers, and the initial 
functions for the factors 𝑑𝑑,𝛾𝛾 і 𝑑𝑑  are are non-negative 
functions on the initial intervals [−Δ; 0]  і [−𝜏𝜏; 0] 
respectively, then there exists a unique continuous 
solution for t > 0.                                                           ∎ 

In the system (1)-(3) exists a stationary solution: 
𝑑𝑑1 = 𝑑𝑑∗,𝑑𝑑1 = 0, 

𝐶𝐶1 = 𝐶𝐶∗ −
𝜀𝜀𝑐𝑐𝑑𝑑∗
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,𝑚𝑚1 =
𝜀𝜀𝑚𝑚𝑑𝑑∗

𝜇𝜇𝑚𝑚
, (4) 

when 
C∗μc > εcE∗, εmE∗ ≤ μmm∗. (5) 

This solution corresponds to the state of a healthy human 
organism. 

Theorem  2. Let the conditions (2) and (5) hold, and 
𝛽𝛽 − 𝛾𝛾𝛾𝛾1 < 0, (6) 

then the stationary solution (4) is locally asymptotically 
stable.                                                    ∎ 
  Corollary. If the conditions of Theorem 1 are 
satisfied and 𝑑𝑑0 = 𝑑𝑑∗, then the disease will not occur. In 
this case, the stability depends on the delay Δ  and is 
independent of the delay τ > 0.  
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The system of equations (1), (3) may have another 

stationary solution, which corresponds to the state of a 
chronic disease: 

E2 = E∗, F2 =
β
γ

, m2 =
δV2 + E2
μm

, 

V2 =
μcμfβ − ργμcC∗ + ργεcE∗

β(αρ − μcηγ) , (7) 

C2 =
αβμf − ηγ2μcC∗ + ηγ2εcE∗

γ(αρ − μcηγ) . 

The stationary solution (7) exists if either  

αρ > μcηγ, 𝜌𝜌𝛾𝛾𝜇𝜇𝑐𝑐𝐶𝐶∗ < 𝜇𝜇𝑐𝑐𝜇𝜇𝑓𝑓𝛽𝛽 + 𝜌𝜌𝛾𝛾𝜀𝜀𝑐𝑐𝑑𝑑∗ 

or the inequality with the opposite sign is satisfied. 
Using the Wolfram Mathematica computer algebra 

system, numerical immune response modeling, 
accounting for external influence, was conducted. Figure 
1 shows the variation in the magnitude of external 
influence depending on certain parameter n = 1, 2 
and 3.  

 
Figure 1. The dynamics of the generalized Hutchinson model for 𝑛𝑛 =

{1,2,3} 𝑎𝑎𝑛𝑛𝑑𝑑 𝑟𝑟 = 0.5,Δ = 1,𝑑𝑑∗ = 0.25. 

 In Figure 2, the functions' graphs are presented in the 
absence of external influence. When external influence is 
present (Figure 3), a weaker immune response is 
observed, along with oscillations in the number of plasma 
cells and damage to the target organ. 

 
Figure 2. Dynamics in the immune response model without external 

influence. Parameters: 𝛽𝛽 = 0.6,𝛾𝛾 = 0.2,𝛼𝛼 = 0.9,𝜇𝜇𝑐𝑐 = 0.5,𝐶𝐶∗ =
1, 𝜀𝜀𝑐𝑐 = 𝜀𝜀𝑚𝑚 = 0,𝜌𝜌 = 0.9, 𝜇𝜇𝑓𝑓 = 0.17,𝜂𝜂 = 0.8,𝜎𝜎 = 0.35, 𝜇𝜇𝑚𝑚 = 0.4, 𝑟𝑟 =

0.5,Δ = 1,𝑑𝑑∗ = 0.25,𝑛𝑛 = 1; V0 = 0.000001, C0 = F0 = 1, E0 =
0.5, m0 = 0 

 
Figure 3. Dynamics in the immune response model with external 
influence. Parameters: 𝛽𝛽 = 0.6,𝛾𝛾 = 0.2,𝛼𝛼 = 0.9,𝜇𝜇𝑐𝑐 = 0.5,𝐶𝐶∗ =

1, 𝜀𝜀𝑐𝑐 = 0.0001,𝜌𝜌 = 0.9, 𝜇𝜇𝑓𝑓 = 0.17,𝜂𝜂 = 0.8,𝜎𝜎 = 0.35,𝜇𝜇𝑚𝑚 =
0.4, 𝜀𝜀𝑚𝑚 = 0.0001, 𝑟𝑟 = 0.5,Δ = 1,𝑑𝑑∗ = 0.25,𝑛𝑛 = 1; V0 = 0.000001, 

C0 = F0 = 1, E0 = 0.5, m0 = 0  

REFERENCES 
 

[1] Marchuk G.I. Mathematical Modelling of Immune Response in 
Infectious Diseases. Springer Science+Business Media, 1997. 350 
p. 

[2] Bodnar, M., Foryś, U. A Model of Immune System with Time-
Dependent Immune Reactivity. Nonlinear Analysis: Theory, 
Methods & Applications, 2009, 70(2). Pp. 1049-1058. 

[3] Marzeniuk V., Nakonechny A. Investigation of delay system with 
piecewise right side arising in radiotherapy. WSEAS Transactions 
on Mathematics. 2004. Vol. 3(1). Pp. 181–187. 

[4] Baranovsky S., Bomba A., Lyashko S., Pryshchepa, O. Diffusion 
Perturbations in Models of the Dynamics of Infectious Diseases 
Taking into Account the Concentrated Effects. Computational 
Methods and Mathematical Modeling in Cyberphysics and 
Engineering Applications 1, 2024. Pp. 273–303. 

[5]  Rusakov S., Chirkov M., & Volinsky I. Modeling of Stable Im-
mune Response Management. Functional Differential Equations, 
Volume 28, No. 3-4, 2021. Pp. 149-157. 

[6] Bihun Y., Ukrainets O. Mathematical Modelling of Immune   
Response to Infectious Diseases with Ecological Factor. 
Proceedings Int. conf. dedicated to the 60th anniversary of the 
foundation of V. Andrunachievici. Institute of Mathematics and 
Computer Science.  Chisinau, 2024. Pp. 151-154. 

 

 
    

  

 

 

 

224


	MCIT2024 224
	MCIT2024 225



