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Abstract — In this communication we present conditions of 
solvability of Sylvester matrix equation AX – XB = C over integer 
domains. The necessary and sufficient conditions of solvability of 
Sylvester equation in term of columns equivalence of matrices 
constructed in a certain way by using the coefficients of this 
equation are proposed. 
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I. INTRODUCTION

Let R  denote an integer domain with identity 01 . 

Further, let nmR ,  be the set of nm matrices over R . Denote 

by nI the identity matrix of dimension n and nm,0  the zero 

nm matrix. For any nmRA , Arank and TA denote the 

rank and the transpose of matrix A  respectively. In what fol-

lows we shall denote by ‘ )(a ’ the characteristic polynomial 

of a matrix mmRA , , i.e. )det()( AIa m   . 

Theorem 1. (Sylvester’s Theorem) Let FR   be an 

algebraically closed field. Further, let mmFA ,  and nnFB , . 

If A  and B  have no eigenvalues in common, then for each 

matrix nmFC , , the equation 

 ,CXBAX  

has a unique solution nmRX , .

Sylvester discovered the result in 1884 [35]. The theorem 1 
is well-known but deserves to be even better known, if for no 
other reason than its proof highlights the power of switching 
back and forth between matrices and linear transformations.  

Note that CBXAX  00 , then matrices 
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similarity transformation by the matrix 
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. Here 

the sO'  are zero matrices.

W.E. Roth [32] proved that the converse is also true, i.e. if 

the matrices CM and OM are similar, and then Sylvester’s 

matrix equation (1) has a solution. This result is called the 
similarity theorem of Roth. We note that the relationship of 
the Sylvester matrix equation with the block-diagonalization 
of block triangular matrices is evident. Generalizations of 
Sylvester’s Theorem to bounded operators, as well as to some 
classes of unbounded operators, are due to Dalecki [4] and 
Rosenblum [31]. 

Another proof of Roth’s theorem was given by Flanders 
and Wimmer in [7] (see also [8], [16], [20, 21]). In [18], 

Jameson studied the matrix equation CXBAX   by the 
method of characteristic polynomial. In [25] it is shown that 
Roth's theorems do not admit a generalization for infinite 
dimensional case. Analogous results for other linear matrix 
equations such as Stein equation CAXBX   were 
established by Wimmer [38] and other authors ([3], [9]).  

The problem of solvability of equation (1) draws the 
attention of many mathematicians. Reviews of theoretical 
results of this problem are given in [10, 11, 20, 22, 30], and 
computational algorithms for solving equation (1) are 
described in [5, 18, 33]. It is well know that Sylvester equation 
is one of the important matrix equations in linear algebra and 
its applications (the control theory, the system theory and 
other). There is a vast literature in linear algebra and matrix 
theory on Sylvester equations.  

Roth’s similarity theorem have also been proved for matri-
ces over commutative rings [10, 13, 17] and unit regular rings 
[15], but most proofs are existence proofs not furnishing any 
solution. These results were discussed in [9] for matrices over 
arbitrary rings. W.H. Gustafson [13] extended the result of 
Roth [32] over fields and proved the following theorem: 

Theorem 2. (Gustafson’s theorem). Let mmRA , ,

nnRB , and nmRC , be non zero matrices over a

commutative ring R  with identity. The equation 

 ,CXBAX   

has a solution over R  if and only if matrices 
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M O  are similar over R . 

This implies that solvability of matrix equation (2) con-
tains the problem of similarity of matrices over commutative 
rings. For matrices over a commutative ring R  with identity, 

including a residue ring ZpZ n
, there is no simple criterion 

of similarity of matrices, or analogue of canonical forms of a 
polynomial matrix over a field is known. However, no 
intelligible results on the structure of similarity classes over 
R  in the general case have been obtained yet. Apparently, all 
attempts at a complete classification of similarity classes of 
matrices over R are doomed to failure, because this problem is 
a “wild” [6]. In spite of the difficulties, in certain partial cases 
the description of similarity classes and the estimate of the 
number of classes are possible (see [1, 2, 12, 14, 19, 23, 26, 
27, 29, 34] and references therein).

In this communication, we establish conditions for solvabi-
lity of Sylvester matrix equation (2) in terms of columns equi-
valence and the Hermite normal forms of matrices constructed 
in a certain way by using the coefficients of this equation. 

II. MAIN RESULTS

In what follows the notation R  means an integer domain 
with identity 01 . The operator vec for any matrix C  

  qpij Rc ,  is defined in the following way (see [8, 16, 21])

11 1 21 2 1

T

q q p pqC c c c c c c   , 

i.e. the entries of C  are stacked columnwise forming a vector

of length mn . And we define the right Kronecker product by

nqmp

nmm

n

R

BaBa

BaBa

BA ,

,1

111



























, 

where   nmij RaA ,  and qpRB , . 

Let mmRA , , nnRB ,  and nmMC , . Put

T
mn BIIAG  . 

Theorem 3. Let mmRA , , nnRB ,  and nmRC , . The 

following statements are equivalent: 

1) equation CXBAX   has a solution nmRX ,0  ;

2) the system of linear equations CXG


 has a solution

1,0 mnRX 


; 

3) matrices  1,0mnG and  CG  are right equivalence

over R . 

Proof. (1) → (2). Let nmRX ,0  be a solution of the

equation CXBAX  , i.e., CBXAX  00 . From this we 

have CXG 0 (see [21]). Thus, the system of equations 

CXG   is solvable.  

(2) → (3). Let CXG 0 , where 1,0 mnRX  . For the matrix 

),1(
10 ,1

0
RmnGL

XI
T

mn

mn















  we have 

,10mnG C T G       . 

Thus, matrices  1,0mnG and  CG  are right equivalence.

(3)→(1). Let 

,10mnG C G U      . (3) 

where ),1( RmnGLU  . The matrix U  we write in the form 

as 11 12

2,1 22

U U
U

U U

 
 
 

, where mnmnRU ,11  and 
12 ,1mnU R . 

From (3) it follows CGU 12 , where 

 12 11 1 21 2 1 .
T

n n m mnU c    

Thus, the matrix mm

mnm

n

RX ,

1

111

0 





























 is the solution 

of the equation CXBAX  . The proof of Theorem 3 is 

complete.  

Corollary 1. Let mmRA ,  and nnRB , . The following 

statements are equivalent: 

1) for each matrix nmRC , equation CXBAX   has

a solution;

2) ),()( RnGLBa  ; 

3) ),()( RmGLAb  . 

Corollary 2. Let mmRA ,  and nnRB ,  be matrices with 

characteristic polynomials )(a  and )(b  respectively. The 

following statements are equivalent:  

1) the equation XBAX   has a non-zero solution

nmRX ,0  ;  

2) matrices )(Ba  and )(Ab  are singular.

Remark. If a non-zero matrix nmRX ,0  is a solution of

the equation XBAX  , then  

 0 min ( ), ( )rank X m rank a B n rank b A   . 

Naturally, the following question arose: Let mmRA , be

given. What shall a matrix ,m mC R  such that the matrix 

equation AX XA C   has a solution? In other words, what are 
matrices that are commutators? This equation was studied in 
many papers (see [30, 36, 37] and references therein). The 
answer to this question is as follows: 

Theorem 4. Let matrices ,, m mA C R  be given. The matrix 

equation AX XA C   has a solution 0 ,m mX R if and only if a 

trace of ,m mC R  is equal to zero and matrices 
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,10T

m m mnA I I A    and T

m mA I I A C   

are right equivalent.

III. APPLICATIONS

Presented results are true for matrices over domains of 
elementary divisors and Bezout domains. They can be 
generalized to equations over commutative rings of a more 
general algebraic nature. 

A1. Let DR   be a Bezout domain (see Chapter 1, [8]) 

and nmDA , be a non-zero matrix with rank A r  in which

the first k rows are zero, i.e., 
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, mmmk r  1 . 

The lower block-triangular matrix 
AH is called a (right) 

Hermitian form of the matrix A  and it is uniquely defined for 

A (see [8, 24]). Thus, matrices nmDA , and
,

1

2
m nB D  are 

right equivalent over a Bezout domain D if and only if the 
Hermitian normal forms of A and B coincide. Thus, we have
arrived to the following result (see also [28]). 

Theorem 4. The system of linear nonhomogeneous 

equations bxA  , where nmDA ,  and 1,mDb  , is solvable 

over a Bezout domain D  if and only if the Hermitian normal 

forms of the matrices  1,0mA  and  bA  coincide.

From the proof of Theorem 3 and Theorem 4 we obtain the 
algorithm for solving of Sylvester matrix equation over 
Bezout domains and domains of principal ideals in particular. 

Corollary 3. Let , ,m mA D ,n nB D and ,m nC D . Equation

CXBAX  has a solution over D if and only if the 

Hermitian forms of the matrices ,10mnG   and G C 
 

coincide. 

A2. Let Z denote the set of integers. Further, let ,m mA Z , 

,n nB Z  and ,m nZ R . From corollary 3 it follows the following 

statement. Matrix equation CXBAX   has a solution 

0 ,m nX Z  if and only if the Hermitian forms of the matrices 

,10mnG   and G C 
  coincide.

The nonzero integer Zd   is said to be square-free if it 

has no square factor, i.e. da |
2

 if and only if 1a . Let 

Zd  be a square-free integer not equal to 0 or 1. We

now consider a ring of quadratic integers 

 , ,K Z Z d a b d where a b Z     . 

Put 
1 2x x x d   and

1 2y y y d  . It is clear that K is an 

integral domain, i.e. K is a commutative ring with unit 1≠0 
such that if 0x y  , then either 0x  or 0y  and with the usual 

addition 
1 1 2 2( )x y x y x y d      and multi-

plication
1 1 2 2 1 2 2 1( )x y x y dx y x y x y d     . The study of rings of 

quadratic integers is basic for many questions of algebraic 
number theory. 

Let ,m mA K , 
,n nB K  and 

,m nC K . Consider the equation

CXBAX  . These matrices we rewrite in the forms 

1 2 1 2 1 2, , ,A A d A B B dB C C dC      where iA , iB , iC are 

matrices with entries from the ring Z  and put 

21 XdXX  , where 
iX are unknown m n matrices over 

Z . From this equation it follows 










.)()(

,)()(

212212112

122221111

CBXXABXXA

CBXXAdBXXA
 

The system of equations (4) we rewrite in the form 

1 1 2 2 11

22 2 1 1 2

( )
.

( )

T T

n m n m

T T

n m n m

A I I B d A I I B CX

XA I I B A I I B C

         
    

          
By theorem 4 we have the following statement.

Corollary 4. Let ,m mA K , ,n nB K  and ,m nC K . The equation 

CXBAX  is solvable over the ring K if and only if the 
Hermitian forms of the matrices 

1 1 2 2 ,1

2 2 1 1 ,1

( ) ( ) 0

( ) ( ) 0

T T

n m n m mn

T T

n m n m mn

A I I B d A I I B

A I I B A I I B

      
 

       

and 

1 1 2 2 1

2 2 1 1 2

( ) ( )

( ) ( )

T T

n m n m

T T

n m n m

A I I B d A I I B C

A I I B A I I B C

      
 

      

coincide. 

Let F  be a field. Put ]R F[λ  the polynomial ring over 

F . Further, let , ,[ ], [ ]m m n nA F B F   and , [ ]m nC F  . Suppose 

that the Hermitian forms of matrices ,1[ ] 0mnG    and 

[ ] [ ]G C  
   coincide. Then for every solution

0[ ]X  of 

equation [ ] [ ] [ ] [ ] [ ]A X X B C       we have 

0deg [ ] deg [ ] deg [ ] deg [ ]X A B C      . 
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