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Abstract – From the moment of Newton’s discovery
of the law of universal gravitation, ordinary differen-
tial equations were used to study the motion of bodies,
since it was assumed that the velocity of gravitation
is infinite. However, in reality the velocity of gravity
is finite, which is consistent with the theory of relativ-
ity of Einstein, which postulated that the velocity of
gravity matches the velocity of light, and the studies
conducted by S. Kopeikin and E. Fomalont on the fun-
damental limit of the velocity of gravity. Due to the
delay of the gravitational field for studying the motion
of bodies, the mathematical apparatus based on dif-
ferential equations with a delay argument is the most
acceptable one. These equations are used to construct
and study the mathematical model of the motion of two
bodies. It is shown that the motion of these bodies with
identical masses (with finite velocity of gravity!) is not
carried out in accordance with Kepler’s laws.

Keywords: two-body problem, two-body problem
with finite gravity velocity.

I. Introduction

The article is devoted to the application of differential
equations with a delayed argument to the construction and
study of a mathematical model of the motion of two bodies
under the action of the forces of the law of gravity, taking
into account the finite speed of gravity.

The application to the study of the motion of two bod-
ies of these equations is natural, since the gravitational
effect of one body on another cannot be instantaneous and
it takes time during which the gravitational field passes the
distance between these bodies.

II. Two-body problem in classical celestial
mechanics

Since the discovery of the law of universal gravitation
by I. Newton (1643-1727) in 1687, ordinary differential
equations were used to study the motion of bodies, since
it was believed that the speed of gravity is infinite.

The simplest task of classical celestial mechanics is the
two-body problem. According to Newton’s second law and
the law of universal gravitation, the differential equations
of motion of the bodies of this problem in some fixed Carte-
sian coordinate system have the form





~̈r1(t) = − Gm2

|~r2(t)− ~r1(t)|3 (~r1(t)− ~r2(t)),

~̈r2(t) = − Gm1

|~r2(t)− ~r1(t)|3 (~r2(t)− ~r1(t)),
(1)

where G is the gravitational constant, m1 and m1 are the
masses of bodies, and |~r2(t)−~r1(t)| is the Euclidean length
of the vector ~r2(t)− ~r1(t).

The study of system (1) is given in many works (see,
for example, [1]–[3]).

I. Newton found a general solution to system (1) and
this solution is given a geometric shape. The trajectories
of the motion of one body relative to another and relative
to the center of mass are finite sections.

III. A mathematical model of the motion of two
bodies, taking into account the finite speed of

gravity

In real space, the speed of gravity cannot be infinite, as
in Newton’s theory. This statement is consistent with Ein-
stein’s theory of relativity, in which it is postulated that
the speed of gravity coincides with the speed of light c, and
with the studies of Kopeikin S.M. and Fomalont E.B. on
the fundamental limit of the speed of gravity [4]. Applica-
tion of this property of gravity allows you to build a model
of motion of two bodies, which uses not ordinary differ-
ential equations, but differential equations with a delayed
argument, and find new properties of the motion of these
bodies.

Consider the movement of points M1 and M2 with
masses m1 and m2 in a rectangular coordinate system
x, y, z with the origin at point O. We consider the coordi-
nate system to be inertial. The position of points M1 and
M2 at time t is determined by their vectors ~ri(t), i = 1, 2.
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If the speed of gravity were infinite, as in classical ce-
lestial mechanics, then, on the basis of the law of universal
gravitation at time t, point M2 pulled point M1 with the
power of

~F (t) =
Gm1m2

|~r2(t)− ~r1(t)|3 (~r2(t)− ~r1(t)). (2)

However, due to the finite speed of gravity, another
force acts on point M1

~F1(t) =
Gm1m2

|~r2(t− τ2(t))− ~r1(t)|3 (~r2(t− τ2(t))− ~r1(t)). (3)

The delay of gravity τ2(t) in (3) is determined by the equal-
ity

cτ2(t) = |~r2(t− τ2(t))− ~r1(t)|, (4)

where c is the speed of gravity.

Indeed, let points M2 and M1 move along the corre-
sponding trajectories, parts of which are shown in Fig. 1,
with speeds ~v2(t) = ~̇r2(t) and ~v1(t) = ~̇r1(t) and at time
t− τ2(t), where τ2(t) satisfies (4), are at points C and D,
respectively. Over a period of time [t− τ2(t), t], point M2

will move from point C to point A, and point M1 will move
from point D to point B. This period of time is enough
for the gravitational field to propagate from speed c from
point C to point B. Therefore, at time t, point B is not
affected by force (2), but by force (3).

Similarly, based on the final gravity velocity, a force
acts on point M2

~F2(t) =
Gm1m2

|~r1(t− τ1(t))− ~r2(t)|3 (~r1(t− τ1(t))− ~r2(t)). (5)

The delay of gravity τ1(t) to (5) is determined by the equal-
ity

cτ1(t) = |~r1(t− τ1(t))− ~r2(t)|. (6)

~v2(t)¸

tA

©©©©©©©©©©*

dC

»»»»»»»»»:

~r2(t− τ2(t))

tB£
£
£±~v1(t)

dD

sO

~r2(t)

~r1(t)

XXXXXXXXXXXXXXXXXXXXz

HHHHHHHHHHHHHHHHHHj

@
@

@
@

@
@

@
@

@
@I

Q
Q

Q
Q

Q
Q

Q
Q

Q
QQk

~r1(t− τ2(t))

Fig. 1. Points M1 and M2 at time points t− τ2(t) and t.
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By virtue of implicit function theorems [5, pp. 449–453],
functions τ2(t) and τ1(t) are continuous and differentiable.

From the above reflections, taking into account New-
ton’s second law and the universal law, it follows that the
motion of two points M1 and M2 with masses m1 and m2

is described by a system of equations
{

m1~̈r1(t) = ~F1(t),
m2~̈r2(t) = ~F2(t).

From here, (3) and (5) we get a system of equations that
describes the motion of points M1 and M2. This system
has the form




r̈1(t) =
Gm2

|~r2(t− τ2(t))− ~r1(t)|3 (~r2(t− τ2(t))− ~r1(t)),

~̈r2(t) =
Gm1

|~r1(t− τ1(t))− ~r2(t)|3 (~r1(t− τ1(t))− ~r2(t)).

(7)
Note that system (7) is a system of differential equa-

tions with a retarded argument and differs significantly
from system (1).

Elements of the theory of differential equations with
delayed argument are presented in [6]–[9].

For a complete description of the motion of points M1

and M2, it is necessary for system (7) to use additional
initial or boundary conditions (see problems 1 and 2).

Problem 1. We fix arbitrary time moment t0 and
continuous on segments [t0 − τi(t0), t0], i = 1, 2, vector
functions ~ϕ0,i(s) and ~ϕ1,i(s), i = 1, 2, respectively. It is
necessary to find solutions ~ri(t), i = 1, 2, system (7), which
satisfy the initial conditions

{
~ri(s) = ~ϕ0,i(s), s ∈ [t0 − τi(t0), t0],
~̇ri(s) = ~ϕ1,i(s), s ∈ [t0 − τi(t0), t0], i = 1, 2.

(8)

Problem 2. Let t1 and t2 be arbitrary instants of
time, for which t1 < t2 − τi(t2), i = 1, 2. Consider twice
continuously differentiated on segments [t1 − τi(t1), t1] and
[t2−τi(t2), t2], i = 1, 2, vector functions ~ψ1,i(s) and ~ψ2,i(s),
i = 1, 2, respectively. It is necessary to find solutions ~ri(t),
i = 1, 2, system (7) that satisfy the conditions
{

~ri(s1) = ~ψ1,i(s1), s1 ∈ [t1 − τi(t1), t1],
~ri(s2) = ~ψ2,i(s2), s2 ∈ [t2 − τi(t2), t2], i = 1, 2.

(9)

Equations (4), (6) and (7) with conditions (8) or (9) are
mathematical models of the motion of two bodies, which
take into account the speed of gravity.

IV. Kerler’s laws and the main purpose of the
article

The movement of bodies (in particular, the movement
of planets) in classical celestial mechanics is carried out ac-
cording to the three laws of Kepler (1571-1630), discovered
in 1605, 1601 and 1618, respectively [10, pp. 261, 262]:
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1. The trajectories of the planets are ellipses, in one of
the foci of which (common to all planets) is the Sun.

2. The areas that are described by the radius vectors
of the planets drawn from the Sun increase in proportion
to time.

3. The squares of the periods of rotation of the plan-
ets around the Sun are correlated as cubes of the major
semiaxes of their orbits.

These laws in celestial mechanics (with a finite speed
of gravity) have some inaccuracies.

Indeed, based on the delay of the gravitational field
when the planets move around the Sun, the attracting
point for each planet at a moment in time t is not the
center of the Sun, as in Kepler’s first law, but another
point in space in which the center of the Sun was at some
moment in time t − τ(t), where τ(t) is a delay depending
on the location of the planet and the Sun, similar to the
delays τ2(t) and τ1(t), which satisfy (4) and (6).

Simple calculations show that each planet rotates
around its ”own ” attracting point, which does not coin-
cide with the center of the Sun, and these points do not
coincide in pairs.

Therefore, due to the displacement of the attracting
points, the motion of the bodies does not agree with Ke-
pler’s first law (with respect to attracting points).

It does not follow from this conclusion that ellipses can-
not be trajectories of bodies.

The purpose of the article is to show that, based on the
finite speed of gravity, the motion of bodies of the same
mass cannot follow Kepler’s laws.

V. The impossibility of moving bodies along an
ellipse behind Kepler’s second law

Consider the system of equations (7), which describes
the motion of two points M1 and M2 with masses m1 and
m2, taking into account the finite speed of gravity. Due
to the presence of delays τ1(t) and τ2(t) in the equations,
which is not in system (1), it is impossible to find a general
solution to this system. However, with additional restric-
tions on the equations of the system, important properties
of the motion of points can be obtained.

In the future, we assume that the masses of points M1

and M2 are the same and equal to m.

Suppose that points M1 and M2 move along the ellipse
and beyond Kepler’s second law.

Then the movement of point M1 relative to point M2

will be periodic.

We use the equations of motion of point M1 relative to
point M2, i.e. equations for the vector function

~r(t) = ~r1(t)− ~r2(t).

Since the points M1 and M2 are affected only by the
forces arising from the interaction of these points, and
these forces are equal in magnitude and opposite in di-
rection, the accelerations ~̈r1(t) and ~̈r2(t) of the movement
of the points have similar properties, i.e.

~̈r1(t) + ~̈r2(t) ≡ 0

and therefore
~̇r1(t) + ~̇r2(t) ≡ ~v, (10)

where ~v is a constant vector. A ratio of (10) means that
the center of the masses of points M1 and M2, which is

determined by the vector function ~rO(t) =
1
2
(~r1(t)+~r2(t)),

moves in a straight line at a constant speed.

Without loss of generality, we can assume that the ori-
gin of the inertial coordinate system coincides with the
center of mass of the points M1 and M2. Then the ratio
of (10) is given in the form

~̇r1(t) + ~̇r2(t) ≡ 0.

Then ~v = 0 and, therefore, the speeds ~v1(t) = ~̇r1(t) and
~v2(t) = ~̇r2(t) of the movement of points M1 and M2 are
opposite.

It follows from the above reasoning that points M1 and
M2 are located on an ellipse with major axis A1A2 sym-
metrically with respect to its center O (see Fig. 2).

The attracting points M∗
1 and M∗

2 for points M2 and
M1, respectively, at time t are also placed on the ellipse
symmetrically with respect to its center O.
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Fig. 2. Location of points M1, M2, M∗
1 and M∗

2 .

The coordinates of points M∗
1 , M∗

2 , M1 and M2 at time
t are determined by vectors ~r1(t−τ1(t)), ~r2(t− τ2(t)), ~r1(t)
and ~r2(t), respectively, and, obviously, according to Fig. 2
are carried out equalities

∣∣∣−−−−→M1M
∗
2

∣∣∣ =
∣∣∣−−−−→M2M

∗
1

∣∣∣ =
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= |~r1(t)− ~r2(t− τ2(t))| = |~r2(t)− ~r1(t− τ1(t))|.
Denote by d(t) the length of the vector

−−−−→
M1M

∗
2 .

Then, in system (7), delays τ1(t) and τ2(t) are the same
(we denote them by τ(t)), and according to the equations
of this system, function ~r(t), which describes the motion
of point M1 relative to point M2, is a solution to equation

~̈r(t) = − Gm

d3(t)
(~r(t) + ~r(t− τ(t))). (11)

Next, we use a rectangular Cartesian coordinate system
with the origin at the center of ellipse O. Let axis Ox of
this coordinate system pass through the vertices A1 and
A2of the ellipse, and axis Oy be perpendicular to axis Ox
and pass through point O.

Then function ~r(t) can be given in the form

~r(t) = 2(x(t), y(t)), (12)

where x(t) and y(t) are the coordinates of point M1 at time
t and according to (11)





ẍ(t) = − Gm

d3(t)
(x(t− τ(t)) + x(t)),

ÿ(t) = − Gm

d3(t)
(y(t− τ(t)) + y(t)).

(13)

We pay attention to one important property of the so-
lutions of the system of equations (13) using functions (12),

~v(t) = ~̇r(t) = 2(ẋ(t), ẏ(t))

and
vσ(t) = 2

∣∣∣∣
x(t) y(t)
ẋ(t) ẏ(t)

∣∣∣∣ . (14)

In the case of classical celestial mechanics vσ(t) is a
sectoral velocity of point M1 relative to point M2 and

vσ(t) ≡ v, (15)

where v is a constant [11, p. 134].

Sectoral speed vσ(t) of the movement of point M1 rel-
ative to point M2, if we take into account the finiteness of
the speed of gravity, is not a constant value, but strictly
increases.

Indeed, given (13) and (14)

1
2

dvσ(t)
dt

=
d

dt

∣∣∣∣
x(t) y(t)
ẋ(t) ẏ(t)

∣∣∣∣ =
∣∣∣∣
x(t) y(t)
ẍ(t) ÿ(t)

∣∣∣∣ =

− Gm

d3(t)

∣∣∣∣
x(t) y(t)

x(t− τ(t)) + x(t) y(t− τ(t)) + y(t)

∣∣∣∣ =

= − Gm

d3(t)

∣∣∣∣
x(t) y(t)

x(t− τ(t)) y(t− τ(t))

∣∣∣∣ .

From these equalities, in particular, we obtain the iden-
tity (15) when τ(t) ≡ 0.

Let t0 be an arbitrary moment of time from the interval
during which the movement of points M1 and M2 occurs.
Then for all t > t0

d

dt

∣∣∣∣
x(t) y(t)
ẋ(t) ẏ(t)

∣∣∣∣ =
Gm

d3(t)
∆(t), (16)

where
∆(t) =

∣∣∣∣
x(t− τ(t)) y(t− τ(t))

x(t) y(t)

∣∣∣∣ .

We use Fig. 3, which shows the vectors ~r(t), ~v(t), ~r(t−
τ(t)) and part of the trajectory the motion of the point
M1 relative to the point M2. The point M3 in this figure
is the end of the vector ~v(t).

d M∗
1

t
M1

M2 t

χ(t)

*

1

~v(t)



Á





rM3

*

@
@ ~r(t− τ(t))@

@
@
@ ~r(t)

Fig. 3. To the growth of sectoral speed.

Hence the geometric meaning of the second-order de-
terminant implies that the area SM1M2M3(t) of triangle
M1M2M3 is a strictly increasing function and the rate of
change of this area is proportional to the area SM1M2M∗

1
(t)

of triangle M1M2M
∗
1 , i.e.

dSM1M2M3(t)
dt

=
Gm

d3(t)
SM1M2M∗

1
(t), t > t0.

The obtained property of the solutions of the system of
equations (13) indicates an increase in the sectoral velocity
of motion of point M1 relative to point M2 (the law of
increasing the sectoral velocity).

An increase in this velocity contradicts the periodicity
of the motion of point M1 relative to point M2.

Therefore, the assumption that points M1 and M2 move
along the ellipse and under Kepler’s second law is false.

Thus, according to Section IV, the movement of the
point M1 does not occur around the point M2, but around
the point of attraction M∗

2 , and the first Kepler’s law with
respect to the point of attraction does not hold. Also, the
sectoral velocity of movement of point M1 relative to point
M2 is not constant but strictly increasing, and therefore
the second Kepler law is not fulfilled.

To show that the third Kepler law is not fulfilled, it
suffices to show that the trajectory of motion of point M1
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relative to point M2 is not an ellipse. Then, for points M1

and M2, the first Kepler law will not be fulfilled not only
with respect to the attraction points, but also with respect
to the motions of their motions.

VI. The impossibility of moving bodies along an
ellipse

Suppose that points M1 and M2 move along the ellipse,
as in Section V.

According on the increase in sector velocity vσ(t) and
the movement of points M1 and M2 by ellipse for some
numbers δ1 > 0 and δ2 > 0 for velocity ~v(t) of movement
of point M1 relative to point M2 and for the angle χ(t)
between vectors r(t) and ~v(t), the inequalities hold

|~v(t)| > δ1, t > t0,

and
δ2 6 χ(t) 6 π − δ2, t > t0.

Therefore, for some number δ3 > 0, the inequalities

d(M1, M
∗
1 ) > δ3, t > t0, (17)

will be satisfied for the distance d(M1,M
∗
1 ) between points

M1 and M∗
1 .

By virtue of (17) and the assumption that the points
M1 and M∗

1 move along the ellipse for a certain number
δ4 > 0, the angle ϕ(t) between vectors ~r1(t) =

−−−→
OM1 and

~r1(t − τ(t)) =
−−−→
OM∗

1 (see Fig. 2) for each t > t0 satisfies
the inequality

π

2
> ϕ(t) > δ4.

Considering that the area S(t) of the parallelogram
constructed on ~r1(t) and ~r1(t − τ(t)) coincides with the
value of the determinant ∆(t) and S(t) = |~r1(t)| · |~r1(t −
τ(t))| sin ϕ(t) (see Fig. 2), we obtain that for some number
δ5 > 0

∆(t) > δ5, t > t0. (18)

Since 0 < 2a 6 d(t) 6 2b, t > t0, where a and b are
the lengths of the minor and major semi-axes of the ellipse
(see Fig. 2), it is based on (16) and (18),

lim
t→+∞

vσ(t) = +∞,

which is impossible, since the speed cannot be greater
than c.

Therefore, the assumption that points M1 and M2 move
along an ellipse is false.

Thus, the motion of two bodies of the same mass in
real space with a finite gravity velocity does not satisfy
Kepler’s laws.

VII. Additional remarks and literature

The general case of a system of n bodies, taking into
account the finite speed of gravity, was considered by the
author in article [12]. This article also pays attention to
the construction of a mathematical model of the solar sys-
tem with a finite speed of gravity and to obtain some new
properties for it.

In [13], the problem of two bodies of arbitrary masses
was studied taking into account the speed of gravity. The
non-Kaplerian behavior and instability of the motion of
these bodies are also shown.

In [14], systems of differential equations with delays and
constraints on delays and derivatives of solutions, which
are used in [12] and [13], are studied.
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