Enhancing Mood and Energy Detection in NLP through Fuzzy Logic Integration

Автор(и)

  • Halyna Melnyk Yuriy Fedkovych Chernivtsi National University
  • Vasyl Melnyk Yuriy Fedkovych Chernivtsi National University

DOI:

https://doi.org/10.31713/MCIT.2024.047

Ключові слова:

Fuzzy Logic, Mood Detection, Energy Intensity, Textual Analysis, Natural Language Processing, Semantic Analysis, Linguistic Variables, Fuzzification, Fuzzy Inference Rules

Анотація

This research presents a dual approach to textual analysis by utilizing fuzzy logic to detect both emotional and energy intensities in text. Through the use of trapezoidal membership functions to model diverse emotional and energy states and the application of an extensive set of fuzzy inference rules, the proposed methodology provides a nuanced, context-aware interpretation of moods and energy levels within text.

##submission.downloads##

Опубліковано

2024-12-07

Як цитувати

Melnyk, H., & Melnyk, V. (2024). Enhancing Mood and Energy Detection in NLP through Fuzzy Logic Integration. Моделювання, керування та інформаційні технології, (7), 165–168. https://doi.org/10.31713/MCIT.2024.047